首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   667篇
  免费   16篇
  2019年   19篇
  2018年   7篇
  2017年   21篇
  2016年   11篇
  2015年   14篇
  2014年   18篇
  2013年   153篇
  2012年   6篇
  2010年   9篇
  2009年   12篇
  2007年   7篇
  2006年   8篇
  2005年   9篇
  2004年   11篇
  2003年   5篇
  2002年   11篇
  2001年   5篇
  2000年   9篇
  1999年   7篇
  1998年   15篇
  1997年   7篇
  1996年   10篇
  1995年   6篇
  1994年   16篇
  1993年   16篇
  1992年   11篇
  1991年   14篇
  1990年   9篇
  1989年   16篇
  1988年   17篇
  1987年   18篇
  1986年   18篇
  1985年   14篇
  1984年   8篇
  1983年   7篇
  1982年   8篇
  1981年   8篇
  1980年   5篇
  1979年   8篇
  1978年   13篇
  1976年   7篇
  1975年   6篇
  1974年   8篇
  1973年   7篇
  1972年   9篇
  1971年   5篇
  1970年   9篇
  1969年   7篇
  1968年   5篇
  1967年   7篇
排序方式: 共有683条查询结果,搜索用时 15 毫秒
661.
Several problems in the assignment of parallel redundant components to systems composed of elements subject to failure are considered. In each case the problem is to make an assignment which maximizes the system reliability subject to system constraints. Three distinct problems; are treated. The first is the classical problem of maximizing system reliability under total cost or weight constraints when components are subject to a single type of failure. The second problem deals with components which are subject to two types of failure and minimizes the probability of one mode of system failure subject to a constraint on the probability of the other mode of system failure. The third problem deals with components which may either fail to operate or may operate prematurely. System reliability is maximized subject to a constraint ori system safety. In each case the problem is formulated as an integer linear program. This has an advantage over alternative dynamic programming formulations in that standard algorithms may be employed to obtain numerical results.  相似文献   
662.
This paper addresses a two‐machine open shop scheduling problem, in which the machines are not continuously available for processing. The processing of an operation affected by a non‐availability interval can be interrupted and resumed later. The objective is to minimize the makespan. We present two polynomial‐time approximation schemes, one of which handles the problem with one non‐availability interval on each machine and the other for the problem with several non‐availability intervals on one of the machines. Problems with a more general structure of the non‐availability intervals are not approximable in polynomial time within a constant factor, unless . © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
663.
This paper proposes a skewness correction (SC) method for constructing the and R control charts for skewed process distributions. Their asymmetric control limits (about the central line) are based on the degree of skewness estimated from the subgroups, and no parameter assumptions are made on the form of process distribution. These charts are simply adjustments of the conventional Shewhart control charts. Moreover, the chart is almost the same as the Shewhart chart if the process distribution is known to be symmetrical. The new charts are compared with the Shewhart charts and weighted variance (WV) control charts. When the process distribution is in some neighborhood of Weibull, lognormal, Burr or binomial family, simulation shows that the SC control charts have Type I risk (i.e., probability of a false alarm) closer to 0.27% of the normal case. Even in the case where the process distribution is exponential with known mean, not only the control limits and Type I risk, but also the Type II risk of the SC charts are closer to those of the exact and R charts than those of the WV and Shewhart charts. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 555–573, 2003  相似文献   
664.
We consider the problem of placing sensors across some area of interest. The sensors must be placed so that they cover a fixed set of targets in the region, and should be deployed in a manner that allows sensors to communicate with one another. In particular, there exists a measure of communication effectiveness for each sensor pair, which is determined by a concave function of distance between the sensors. Complicating the sensor location problem are uncertainties related to sensor placement, for example, as caused by drifting due to air or water currents to which the sensors may be subjected. Our problem thus seeks to maximize a metric regarding intrasensor communication effectiveness, subject to the condition that all targets must be covered by some sensor, where sensor drift occurs according to a robust (worst‐case) mechanism. We formulate an approximation approach and develop a cutting‐plane algorithm to solve this problem, comparing the effectiveness of two different classes of inequalities. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 582–594, 2015  相似文献   
665.
In a multifunction radar, the maximum number of targets that can be managed or tracked is an important performance measure. Interleaving algorithms developed to operate radars exploit the dead‐times between the transmitted and the received pulses to allocate new tracking tasks that might involve transmitting or receiving pulses, thus increasing the capacity of the system. The problem of interleaving N targets involves a search among N! possibilities, and suboptimal solutions are usually employed to satisfy the real‐time constraints of the radar system. In this paper, we present new tight 0–1 integer programming models for the radar pulse interleaving problem and develop effective solution methods based on Lagrangian relaxation techniques. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
666.
We apply dynamic proximity calculations (density and clustering) from dynamic computational geometry to a military application. The derived proximity information serves as an abstract view of a current situation in the battlefield that can help a military commander achieve situation awareness. We employ Delaunay triangulation as a computational tool in our framework, and study its dynamic update in depth. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
667.
It is shown, in this note, that the right spread order and the increasing convex order are both preserved under the taking of random maxima, and the total time on test transform order and the increasing concave order are preserved under the taking of random minima. Some inequalities and preservation properties in reliability and economics are given as applications. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
668.
The authors engage in the debate over waste in military force structure planning by rigorously deconstructing the concept of “redundancy.” First, a typology of redundancy is constructed that provides a common framework for identifying variety among redundant structures. These are labeled “true redundancy,” “expanded capacity,” “portfolio diversification,” and “mission overlap.” Further, a number of mechanisms are identified that produce these types of structures, and show the conditions under which planners may utilize redundant structure in the search for optimization. In sum, the article provides refined concepts for analysts and planners to identify when redundancy is deleterious or beneficial.  相似文献   
669.
With the burgeoning influence of emerging markets in Asia, a tectonic shift is taking place in the global security landscape. Asian states are concomitantly arming as their economic clout grows. In light of these developments, security analysts would benefit from a formal means of placing these arms acquisitions in a structural context. Are arms acquisitions on par with the expectations of Asian states, given their structural dispositions, or are recent acquisitions beyond anticipated levels? By using a dynamic panel regression of 187 states from 1950 to 2011, this research predicts arms import volume using the degree of interstate arms linkages, the size of a state's military, and its level of economic development. The technique offers analysts a formal means of distinguishing orthodox behavior in importing conventional weapons from extraneous security motivations. The article concludes by generating near-term forecasts of Asian arms imports and discussing the implications of the technique.  相似文献   
670.
The purpose of this paper is to investigate the problem of constructing an appointment template for scheduling patients at a specific type of multidisciplinary outpatient clinic called an integrated practice unit (IPU). The focus is on developing and solving a stochastic optimization model for a back pain IPU in the face of random arrivals, an uncertain patient mix, and variable service times. The deterministic version of the problem is modeled as a mixed integer program with the objective of minimizing a weighted combination of clinic closing time (duration) and total patient waiting time (length of stay). A two‐stage stochastic program is then derived to account for the randomness and the sequential nature of the decisions. Although it was not possible to solve the two‐stage problem for even a limited number of scenarios, the wait‐and‐see (WS) problem was sufficiently tractable to provide a lower bound on the stochastic solution. The introduction of valid inequalities, limiting indices, and the use of special ordered sets helped to speed up the computations. A greedy heuristic was also developed to obtain solutions much more quickly. Out of practical considerations, it was necessary to develop appointment templates with time slots at fixed intervals, which are not available from the WS solution. The first to be derived was the expected value (EV) template that is used to find the expected value of the EV solution (EEV). This solution provides an upper bound on the objective function value of the two‐stage stochastic program. The average gap between the EEV and WS solutions was 18%. Results from extensive computational testing are presented for the EV template and for our adaptation of three other templates found in the literature. Depending on the relative importance of the two objective function metrics, the results demonstrate the trade‐off that exists between them. For the templates investigated, the “closing time” ranged from an average of 235 to 275 minutes for a 300‐minute session, while the corresponding “total patient time in clinic” ranged from 80 to 71 minutes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号