首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   55篇
  国内免费   1篇
  2021年   6篇
  2019年   14篇
  2018年   8篇
  2017年   15篇
  2016年   18篇
  2015年   20篇
  2014年   17篇
  2013年   128篇
  2012年   15篇
  2011年   11篇
  2010年   11篇
  2009年   13篇
  2008年   14篇
  2007年   14篇
  2006年   12篇
  2005年   13篇
  2004年   9篇
  2003年   14篇
  2002年   12篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1997年   5篇
  1996年   7篇
  1994年   5篇
  1993年   10篇
  1992年   6篇
  1991年   8篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   8篇
  1979年   8篇
  1978年   8篇
  1976年   7篇
  1975年   10篇
  1974年   6篇
  1973年   8篇
  1972年   5篇
  1971年   4篇
  1970年   5篇
  1969年   4篇
  1968年   5篇
  1967年   3篇
排序方式: 共有568条查询结果,搜索用时 15 毫秒
521.
We consider a class of facility location problems with a time dimension, which requires assigning every customer to a supply facility in each of a finite number of periods. Each facility must meet all assigned customer demand in every period at a minimum cost via its production and inventory decisions. We provide exact branch‐and‐price algorithms for this class of problems and several important variants. The corresponding pricing problem takes the form of an interesting class of production planning and order selection problems. This problem class requires selecting a set of orders that maximizes profit, defined as the revenue from selected orders minus production‐planning‐related costs incurred in fulfilling the selected orders. We provide polynomial‐time dynamic programming algorithms for this class of pricing problems, as well as for generalizations thereof. Computational testing indicates the advantage of our branch‐and‐price algorithm over various approaches that use commercial software packages. These tests also highlight the significant cost savings possible from integrating location with production and inventory decisions and demonstrate that the problem is rather insensitive to forecast errors associated with the demand streams. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
522.
We study a supply chain in which a manufacturer relies on a salesperson to sell the products to the consumers. The sales outcome is determined by a random market condition and the salesperson's service level, both of which are privately observed by the salesperson. Apart from them, there are two types of resellers: a knowledgeable reseller observes the market condition, whereas a diligent reseller can monitor the service level. While delegating to a reseller enhances information acquisition, it may also result in double marginalization and inefficiency. We identify several operating regimes in which double marginalization can be eliminated via simple contracts and establish the benefit of monitoring the salesperson over monitoring the market. Our dominance result is not prone to our model characteristics regarding the complementarity of market condition and sales effort, the relative importance of adverse selection and moral hazard, and the contract form. We then generalize our model and re‐establish the dominance result in the presence of reseller's risk aversion or private monitoring expertise. We also quantify the performance gaps among different selling schemes under various scenarios. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
523.
Decentralized decision‐making in supply chain management is quite common, and often inevitable, due to the magnitude of the chain, its geographical dispersion, and the number of agents that play a role in it. But, decentralized decision‐making is known to result in inefficient Nash equilibrium outcomes, and optimal outcomes that maximize the sum of the utilities of all agents need not be Nash equilibria. In this paper we demonstrate through several examples of supply chain models how linear reward/penalty schemes can be implemented so that a given optimal solution becomes a Nash equilibrium. The examples represent both vertical and horizontal coordination issues. The techniques we employ build on a general framework for the use of linear reward/penalty schemes to induce stability in given optimal solutions and should be useful to other multi‐agent operations management settings. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
524.
The quay crane scheduling problem consists of determining a sequence of unloading and loading movements for cranes assigned to a vessel in order to minimize the vessel completion time as well as the crane idle times. Idle times originate from interferences between cranes since these roll on the same rails and a minimum safety distance must be maintained between them. The productivity of container terminals is often measured in terms of the time necessary to load and unload vessels by quay cranes, which are the most important and expensive equipment used in ports. We formulate the quay crane scheduling problem as a vehicle routing problem with side constraints, including precedence relationships between vertices. For small size instances our formulation can be solved by CPLEX. For larger ones we have developed a branch‐and‐cut algorithm incorporating several families of valid inequalities, which exploit the precedence constraints between vertices. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
525.
The reoptimization procedure within the shifting bottleneck (SB) involves reevaluation of all previously scheduled toolgroup subproblems at each iteration of the SB heuristic. A real options analysis (ROA) model is developed to value the option to reoptimize in the SB heuristic, such that reoptimization only occurs when it is most likely to lead to a schedule with a lower objective function. To date, all ROA models have sought to value options financially (i.e., in terms of monetary value). The ROA model developed in this paper is completely original in that it has absolutely no monetary basis. The ROA methodologies presented are shown to greatly outperform both full and no reoptimization approaches with respect to both computation time and total weighted tardiness. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
526.
对海战场综合态势进行态势评估和威胁分析是信息融合系统的最高层级,态势评估结果将对指挥员的指挥决策起到非常重要的作用。根据海军作战理论分析了海战场态势的表示方法,并基于模板方法设计了一种战场当前态势与模板数据库中态势进行匹配的算法。该算法特别适用于高层推理如态势或威胁评估。  相似文献   
527.
Control charts are widely used for process surveillance. The design of a control chart refers to the choice of sample size, the width of the control limits, and the interval between samples. Economic designs have been widely investigated and shown to be an effective method of determining control chart parameters. This article describes two different manufacturing process models to which the X¯ control chart is applied: The first model assumes that the process continues in operation while searches for the assignable cause are made, and the second assumes that the process must be shut down during the search. Economic models of the control chart for these two manufacturing process models are developed, and the sensitivity of the control chart parameters to the choice of model is explored. It is shown that the choice of the proper manufacturing process model is critical because selection of an inappropriate process model may result in significant economic penalties.  相似文献   
528.
529.
A complete solution is derived to the Isbell and Marlow fire programming problem. The original work of Isbell and Marlow has been extended by determining the regions of the initial state space from which optimal paths lead to each of the terminal states of combat. The solution process has involved determining the domain of controllability for each of the terminal states of combat and the determination of dispersal surfaces. This solution process suggests a solution procedure applicable to a wider class of tactical allocation problems, terminal control attrition differential games. The structure of optimal target engagement policies in “fights to the finish” is discussed.  相似文献   
530.
The historic max-min problem is examined as a discrete process rather than in its more usual continuous mode. Since the practical application of the max-min model usually involves discrete objects such as ballistic missiles, the discrete formulation of the problem seems quite appropriate. This paper uses an illegal modification to the dynamic programming process to obtain an upper bound to the max-min value. Then a second but legal application of dynamic programming to the minimization part of the problem for a fixed maximizing vector will give a lower bound to the max-min value. Concepts of optimal stopping rules may be applied to indicate when sufficiently near optimal solutions have been obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号