首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1056篇
  免费   299篇
  国内免费   38篇
  2024年   1篇
  2023年   5篇
  2022年   15篇
  2021年   61篇
  2020年   19篇
  2019年   7篇
  2018年   8篇
  2017年   19篇
  2016年   10篇
  2015年   35篇
  2014年   54篇
  2013年   49篇
  2012年   41篇
  2011年   39篇
  2010年   66篇
  2009年   84篇
  2008年   58篇
  2007年   72篇
  2006年   34篇
  2005年   36篇
  2004年   9篇
  2003年   2篇
  2002年   6篇
  2001年   7篇
  2000年   22篇
  1999年   114篇
  1998年   86篇
  1997年   68篇
  1996年   55篇
  1995年   50篇
  1994年   45篇
  1993年   37篇
  1992年   38篇
  1991年   37篇
  1990年   45篇
  1989年   10篇
  1988年   5篇
  1987年   12篇
  1986年   8篇
  1985年   9篇
  1983年   11篇
  1982年   3篇
  1978年   1篇
排序方式: 共有1393条查询结果,搜索用时 0 毫秒
721.
In this study, 40CrMnSiB steel cylindrical shells were tempered at 350, 500 and 600 ℃ to study the effect of tempering temperature on the dynamic process of expansion and fracture of the metal shell. A mid-explosion recovery experiment for the metal cylinder under internal explosive loading was designed, and the wreckage of the casings at the intermediate phase was obtained. The effects of different tempering temperatures on the macroscopic and microscopic fracture characteristics of 40CrMnSiB steel were studied. The influence of tempering temperatures on the fracture characteristic parameters of the recovered wreckage were measured and analyzed, including the circumferential divide size, the thick-ness and the number of the circumferential divisions. The results show that as the tempering temper-ature was increased from 350 to 600 ℃, at first, the degree of fragmentation and the fracture characteristic parameters of the recovered wreckage changed significantly and then became essentially consistent. Scanning electron microscopy analysis revealed flow-like structure characteristics caused by adiabatic shear on different fracture surfaces. At the detonation initiation end of the casing, fracturing was formed by tearing along the crack, which existed a distance from the initiation end and propagated along the axis direction. In contrast, the fracturing near the middle position consists of a plurality of radial shear fracture units. The amount of alloy carbide that was precipitated during the tempering process increased continuously with tempering temperature, leading to an increasing number of spherical carbide particles scattered around the fracture surface.  相似文献   
722.
The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base (CMDB) propellant. Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process. To improve the accuracy of the simulation results, material parameters and model structure were corrected based on actual conditions, and adaptive grid technology was applied in the local mesh refinement. In addition, the rheological behavior, motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps, rotational rates and temperatures of two rollers. The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet. Compared with the gap, the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging. Meanwhile, under the synergistic effect of contact heat transfer as well as convective heat exchange, heat accumulated near the outlet and diffused along the reflux movement, which led to the countercurrent heat dissipation behavior of CMDB propellant slurry. The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored, which provided theoretical guidance and reference data for the optimization of calendering process conditions. Based on the simulation results, the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.  相似文献   
723.
The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene (CL-20/TNT) composite was prepared by spray-drying method in which sensitive high energy explosive (CL-20) was coated with insensitive explosive (TNT). The structure and properties of different formulations of CL-20/TNT composite and CL-20/TNT mixture were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Laser particle size analyzer, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impact sensitivity test and detonation performance. The results of SEM, TEM, XPS and XRD show that ϵ-CL-20 particles are coated by TNT. When the ratio of CL-20/TNT is 75/25, core-shell structure is well formed, and thickness of the shell is about 20–30 nm. And the analysis of heat and impact show that with the increase of TNT content, the TNT coating on the core-shell composite material can not only catalyze the thermal decomposition of core material (CL-20), but also greatly reduce the impact sensitivity. Compared with the CL-20/TNT mixture (75/25) at the same ratio, the characteristic drop height of core-shell CL-20/TNT composite (75/25) increased by 47.6% and the TNT coating can accelerate the nuclear decomposition in the CL-20/TNT composites. Therefore, the preparation of the core-shell composites can be regarded as a unique means, by which the composites are characterized by controllable decomposition rate, high energy and excellent mechanical sensitivity and could be applied to propellants and other fields.  相似文献   
724.
When a penetrator with enhanced lateral effect (PELE) impacts on a reinforced concrete (RC) target, the target is damaged with a large opening. An understanding of how PELE projectile parameters affect the opening dimension, is essential for effective design of the PELE projectile. In this study, under the condition that the impact velocity and target parameters (strength and thickness) were fixed values, the important influence factors of the PELE (jacket wall thickness B, jacket material strength Y1, filling material strength Y2 and angle of monolithic jacketθ) were determined by a dimensional analysis. Tests and simulations of the PELE penetrating the RC target were conducted to analyze the influence of these factors on opening diameter ((D), an equivalent diameter under relative kinetic energy). Based on the test and simulation results, it is found that the influence of these factors B, Y1 andθon the deformation mode of the jacket shows a similar trend:as values of the three factors decrease, the jacket deforms from small bending deformation to large one, and then to curling deformation. This causes the opening diameter to first increase with the decrease of these three factors, and then decreases. It is well known that the bending resistance of the jacket is related to these factors B, Y1 andθ. Therefore, a plastic limit bending moment (M0) of the jacket was quoted to characterize the influence of these factors on the bending deformation of the jacket and the opening diameter of the target. The influence factor Y2 causes (D) to first increase with the increase of Y2, and then decreases. A formula was developed to predict the opening diameter, whose influence parameters were considered in a dimensionless way. It has been shown that the dimensionless opening diameter (D)/d1 is dependent on two dimensionless parameters Q = (d31fc/M0) and G = (fc/Y2), where d1 and fc are the outer diameter of the projectile and the compressive strength of the target, respectively.  相似文献   
725.
Projectiles made of reactive structure materials(RSM)can damage the target with not only kinetic but also chemical energy,but the enhanced damage potential of RSM may become compromised if extreme loading condition disintegrates the projectile before the target is reached.In this work,a ductile coating of Ni was introduced to a tungsten-zirconium(W-Zr)alloy,a typical brittle RSM,to preserve the damage potential of the projectile.Detonation driving tests were carried out with X-ray photography and gun-powder deflagration driving tests were carried out with high-speed photography for the coated and uncoated RSM samples,respectively.The craters on the witness target were analyzed by scanning electron microscopy and X-ray diffraction.The Ni coating was found to effectively preserve the damage potential of the W-Zr alloy under extreme loading conditions,whereas the uncoated sample fractured and ignited before impacting the target in both detonation and deflagration driving.The crack propa-gation between the reactively brittle core and the ductile coating was analyzed based on the crack arrest theory to mechanistically demonstrate how the coating improves the structural integrity and preserves the damage potential of the projectile.Specifically,the Ni coating envelops the W-Zr core until the coated sphere penetrates the target,and the coating is then eroded and worn to release the reactive core for the projectile to damage the target more intensively.  相似文献   
726.
The aerodynamic characteristics are vital for short cylindrical Terminal Sensitive Bullets(TSB)with low aspect ratio,especially in terminal trajectory.Currently,there is little research in terms of the TSB and short cylinder with two free ends,and particularly in this trajectory,where the scanning angle β and roll angle α vary over a broad range between 0° and 180°.In this work,wind tunnel experiments are first conducted to learn the effects of Reynolds number and scanning angle on aerodynamic parameters for short cylinder with aspect ratio L/D = 1.Similar to infinite cylinder,for the short cylinder with two free ends,the drag crisis phenomenon still exists in the critical regime 1.7 × 105 ≤ Re ≤ 6.8 × 105.Then 3D simulations are performed to demonstrate the aerodynamic characteristics of short cylinder and TSB over a broad range of Re,L/D,α and β.The sensitivity analysis of time step and grid are presented as well.When β=0°,for short cylinder,the drag crisis phenomenon was also observed in the simulation,but not as obvious as in the wind tunnel test.In some attitudes,there is an obvious Kármán vortex in the wake of short cylinder and TSB.The correlation between time-averaged aerodynamic coefficients and L/D,Re,α&β is discussed.The vortex shedding frequency and shear layer behavior are obtained for quasi-steady and unsteady flow.Finally,the effect of end's shape on drag reduction and vortex shedding frequency is analyzed.  相似文献   
727.
红外警戒系统点目标检测距离理论分析   总被引:1,自引:0,他引:1  
给出了红外警戒系统点目标探测距离的计算模型与公式,分析了影响点目标探测距离的参数间关系,并得出有关目标提取算法及传感器参数选择的几点重要结论.  相似文献   
728.
本文介绍了一个严格监督控制(Supervisorycontrol)定义下的局部自主机器人控制器GKD3的设计和实现,并从监督控制理论的角度,对GKD3的体系结构和功能进行了分析和讨论。  相似文献   
729.
本文论述了用单球法测量大直径锯齿形螺纹中径的原理与方法,具体介绍了为实现这种方法而设计的检测装置。对这个装置进行了精度标定和测试,实验表明,该测量仪器使用方便,精度较高,具有较强的实用性。  相似文献   
730.
互连网络是大规模并行计算机的重要组成部分,路由算法是其中决定网络性能的重要因素,本文在直接网络结构基础上对路由算法进行讨论,给出了一种分类方法,并着重对采用虫孔路由开关技术的自适应路由算法进行分析,为进一步的评价和设计新的算法提供了参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号