首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   9篇
  2021年   10篇
  2019年   7篇
  2017年   8篇
  2016年   6篇
  2015年   11篇
  2014年   8篇
  2013年   67篇
  2010年   2篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2003年   2篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   8篇
  1997年   8篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   8篇
  1992年   7篇
  1991年   8篇
  1990年   2篇
  1989年   7篇
  1988年   14篇
  1987年   6篇
  1986年   15篇
  1985年   9篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   8篇
  1980年   5篇
  1979年   11篇
  1978年   7篇
  1977年   7篇
  1976年   2篇
  1975年   9篇
  1974年   7篇
  1973年   5篇
  1972年   7篇
  1971年   4篇
  1970年   4篇
  1969年   6篇
  1968年   3篇
  1967年   2篇
  1966年   3篇
排序方式: 共有383条查询结果,搜索用时 15 毫秒
351.
We consider two regression models: linear and logistic. The dependent variable is observed periodically and in each period a Bayesian formulation is used to generate updated forecasts of the dependent variable as new data is observed. One would expect that including new data in the Bayesian updates results in improved forecasts over not including the new data. Our findings indicate that this is not always true. We show there exists a subset of the independent variable space that we call the “region of no learning.” If the independent variable values for a given period in the future are in this region, then the forecast does not change with any new data. Moreover, if the independent variable values are in a neighborhood of the region of no learning, then there may be little benefit to wait for the new data and update the forecast. We propose a statistical approach to characterize this neighborhood which we call the “region of little learning.” Our results provide insights into the trade‐offs that exist in situations when the decision maker has an incentive to make an early decision based on an early forecast versus waiting to make a later decision based on an updated forecast. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 532–548, 2014  相似文献   
352.
Each year, more than $3 billion is wagered on the NCAA Division 1 men's basketball tournament. Most of that money is wagered in pools where the object is to correctly predict winners of each game, with emphasis on the last four teams remaining (the Final Four). In this paper, we present a combined logistic regression/Markov chain model for predicting the outcome of NCAA tournament games given only basic input data. Over the past 6 years, our model has been significantly more successful than the other common methods such as tournament seedings, the AP and ESPN/USA Today polls, the RPI, and the Sagarin and Massey ratings. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   
353.
The bivariate negative binomial distribution of Mitchell and Paulson [17] for the case b = c = 0 is shown to be equivalent to the accident proneness model of Edwards and Gurland [4] and Subrahmaniam [19,20]. The diagonal series expansion of its joint probability function is then derived. Two other formulations of this distribution are also considered: (i) as a mixture model, which showed how it arises as the discrete analogue to the Wicksell-Kibble bivariate gamma distribution, and (ii) as a consequence of the linear birth-and-death process with immigration.  相似文献   
354.
This article generalizes the classical dichotomic reliability model to include states of partial operation. The generalized model can be considered as a special case of a general jump process. Both continuous and discrete state spaces are included. The relationship to cumulative damage shock models is discussed. Properties of the model are investigated and these are illustrated via examples. The equivalence of three forms of component independence is proved, but this equivalence does not generalize to the property of zero covariance. Alternative forms of series and parallel connections and the effect of component replacement are discussed.  相似文献   
355.
Consider the following situation: Each of N different combat units is presented with a number of requirements to satisfy, each requirement being classified into one of K mutually exclusive categories. For each unit and each category, an estimate of the probability of that unit satisfying any requirement in that category is desired. The problem can be generally stated as that of estimating N different K-dimensional vectors of probabilities based upon a corresponding set of K-dimensional vectors of sample proportions. An empirical Bayes model is formulated and applied to an example from the Marine Corps Combat Readiness Evaluation System (MCCRES). The EM algorithm provides a convenient method of estimating the prior parameters. The Bayes estimates are compared to the ordinary estimates, i.e., the sample proportions, by means of cross validation, and the Bayes estimates are shown to provide considerable improvement.  相似文献   
356.
357.
This article examines a version of the machine repair problem where failures may be irreparable. Since the number of machines in the system keeps decreasing, we impose a fixed state-dependent ordering policy of the type often encountered in inventory models. Although the system is Markovian, the number of states becomes very large. The emphasis of the article, therefore, is on deriving computationally tractable formulas for the steady-state probabilities, the long-run average cost per unit time, and the vector of expected discounted costs. When the state space is so large that exact computations may be infeasible, we propose approximations which are relatively quick and simple to compute and which yield very accurate results for the test problems examined.  相似文献   
358.
This paper considers sequential test procedures to decision problems where there exists time delays in obtaining observations.  相似文献   
359.
In peacetime, base stock levels of spares are determined on the assumption of normal resupply from the depot. In the event of war, however, a unit must be prepared to operate from stock on hand for a period of time without being resupplied from the depot. This paper describes a mathematical model for determining such war reserve spares (WRS) requirements. Specifically, the model solves the following kind of optimization problem: find the least-cost WRS kits that will keep the probability of a stockout after K cannibalizations less than or equal to some target objective α. The user of the model specifies the number of allowable cannibalizations, and the level of protection that the kit is supposed to provide. One interesting feature of this model is that in the probability computation it takes into account the possiblility of utilizing normal base operating assets. Results of a sensitivity analysis indicate that if peacetime levels were explicitly taken into account when designing a WRS kit, a cost saving of nearly 40 percent could be effected without degrading base supply performance in wartime.  相似文献   
360.
A modification to the Dantzig and Fulkerson Tanker Scheduling Problem is described. An insufficient number of vehicles and a utility associated with each vehicle delivery are assumed. The new problem is shown to be equivalent to a Transshipment Problem, the solution of which is the same as the maximal utility solution of the modified Tanker Scheduling Problem. An example is given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号