首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   754篇
  免费   1篇
  755篇
  2021年   13篇
  2019年   13篇
  2017年   16篇
  2016年   13篇
  2015年   19篇
  2014年   14篇
  2013年   131篇
  2011年   6篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   8篇
  2003年   7篇
  2002年   11篇
  2001年   14篇
  2000年   8篇
  1999年   10篇
  1998年   15篇
  1997年   16篇
  1996年   12篇
  1995年   16篇
  1994年   19篇
  1993年   17篇
  1992年   18篇
  1991年   19篇
  1990年   7篇
  1989年   10篇
  1988年   21篇
  1987年   14篇
  1986年   17篇
  1985年   17篇
  1984年   15篇
  1983年   11篇
  1982年   8篇
  1981年   14篇
  1980年   11篇
  1979年   18篇
  1978年   10篇
  1977年   9篇
  1976年   8篇
  1975年   17篇
  1974年   13篇
  1973年   10篇
  1972年   14篇
  1971年   9篇
  1970年   7篇
  1969年   8篇
  1968年   7篇
  1967年   6篇
  1966年   5篇
排序方式: 共有755条查询结果,搜索用时 15 毫秒
731.
    
This article examines optimal path finding problems where cost function and constraints are direction, location, and time dependent. Recent advancements in sensor and data‐processing technology facilitate the collection of detailed real‐time information about the environment surrounding a ground vehicle, an airplane, or a naval vessel. We present a navigation model that makes use of such information. We relax a number of assumptions from existing literature on path‐finding problems and create an accurate, yet tractable, model suitable for implementation for a large class of problems. We present a dynamic programming model which integrates our earlier results for direction‐dependent, time and space homogeneous environment, and consequently, improves its accuracy, efficiency, and run‐time. The proposed path finding model also addresses limited information about the surrounding environment, control‐feasibility of the considered paths, such as sharpest feasible turns a vehicle can make, and computational demands of a time‐dependent environment. To demonstrate the applicability and performance of our path‐finding algorithm, computational experiments for a short‐range ship routing in dynamic wave‐field problem are presented. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
732.
Acceptance sampling plans are used to assess the quality of an ongoing production process, in addition to the lot acceptance. In this paper, we consider sampling inspection plans for monitoring the Markov‐dependent production process. We construct sequential plans that satisfy the usual probability requirements at acceptable quality level and rejectable quality level and, in addition, possess the minimum average sample number under semicurtailed inspection. As these plans result in large sample sizes, especially when the serial correlation is high, we suggest new plans called “systematic sampling plans.” The minimum average sample number systematic plans that satisfy the probability requirements are constructed. Our algorithm uses some simple recurrence relations to compute the required acceptance probabilities. The optimal systematic plans require much smaller sample sizes and acceptance numbers, compared to the sequential plans. However, they need larger production runs to make a decision. Tables for choosing appropriate sequential and systematic plans are provided. The problem of selecting the best systematic sampling plan is also addressed. The operating characteristic curves of some of the sequential and the systematic plans are compared, and are observed to be almost identical. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 451–467, 2001  相似文献   
733.
T identical exponential lifetime components out of which G are initially functioning (and B are not) are to be allocated to N subsystems, which are connected either in parallel or in series. Subsystem i, i = 1,…, N, functions when at least Ki of its components function and the whole system is maintained by a single repairman. Component repair times are identical independent exponentials and repaired components are as good as new. The problem of the determination of the assembly plan that will maximize the system reliability at any (arbitrary) time instant t is solved when the component failure rate is sufficiently small. For the parallel configuration, the optimal assembly plan allocates as many components as possible to the subsystem with the smallest Ki and allocates functioning components to subsystems in increasing order of the Ki's. For the series configuration, the optimal assembly plan allocates both the surplus and the functioning components equally to all subsystems whenever possible, and when not possible it favors subsystems in decreasing order of the Ki's. The solution is interpreted in the context of the optimal allocation of processors and an initial number of jobs in a problem of routing time consuming jobs to parallel multiprocessor queues. © John Wiley & Sons, Inc. Naval Research Logistics 48: 732–746, 2001  相似文献   
734.
A mathematical formulation of an optimization model designed to select projects for inclusion in an R&D portfolio, subject to a wide variety of constraints (e.g., capital, headcount, strategic intent, etc.), is presented. The model is similar to others that have previously appeared in the literature and is in the form of a mixed integer programming (MIP) problem known as the multidimensional knapsack problem. Exact solution of such problems is generally difficult, but can be accomplished in reasonable time using specialized algorithms. The main contribution of this paper is an examination of two important issues related to formulation of project selection models such as the one presented here. If partial funding and implementation of projects is allowed, the resulting formulation is a linear programming (LP) problem which can be solved quite easily. Several plausible assumptions about how partial funding impacts project value are presented. In general, our examples suggest that the problem might best be formulated as a nonlinear programming (NLP) problem, but that there is a need for further research to determine an appropriate expression for the value of a partially funded project. In light of that gap in the current body of knowledge and for practical reasons, the LP relaxation of this model is preferred. The LP relaxation can be implemented in a spreadsheet (even for relatively large problems) and gives reasonable results when applied to a test problem based on GM's R&D project selection process. There has been much discussion in the literature on the topic of assigning a quantitative measure of value to each project. Although many alternatives are suggested, no one way is universally accepted as the preferred way. There does seem to be general agreement that all of the proposed methods are subject to considerable uncertainty. A systematic way to examine the sensitivity of project selection decisions to variations in the measure of value is developed. It is shown that the solution for the illustrative problem is reasonably robust to rather large variations in the measure of value. We cannot, however, conclude that this would be the case in general. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 18–40, 2001  相似文献   
735.
Trafficking in persons in Nigeria has largely targeted adults and children, particularly women and girls. Of growing concern, however, is the recent emergence and growth of sophisticated and syndicated groups involved in baby ‘factories’ and trafficking in Nigeria. This article examines the nature, actors, modus operandi and motives behind this emergent dimension of human trafficking in Nigeria. It concludes that if concerted efforts are not made to deal with the actors and dismantle the market, its profitability will embolden current actors and even encourage new entrants into the booming trade – now and in the future.  相似文献   
736.
    
We develop a simple, approximately optimal solution to a model with Erlang lead time and deterministic demand. The method is robust to misspecification of the lead time and has good accuracy. We compare our approximate solution to the optimal for the case where we have prior information on the lead‐time distribution, and another where we have no information, except for computer‐generated sample data. It turns out that our solution is as easy as the EOQ's, with an accuracy rate of 99.41% when prior information on the lead‐time distribution is available and 97.54–99.09% when only computer‐generated sample information is available. Apart from supplying the inventory practitioner with an easy heuristic, we gain insights into the efficacy of stochastic lead time models and how these could be used to find the cost and a near‐optimal policy for the general model, where both demand rate and lead time are stochastic. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
737.
    
We consider a pricing problem in directed, uncapacitated networks. Tariffs must be defined by an operator, the leader, for a subset of m arcs, the tariff arcs. Costs of all other arcs in the network are assumed to be given. There are n clients, the followers, and after the tariffs have been determined, the clients route their demands independent of each other on paths with minimal total cost. The problem is to find tariffs that maximize the operator's revenue. Motivated by applications in telecommunication networks, we consider a restricted version of this problem, assuming that each client utilizes at most one of the operator's tariff arcs. The problem is equivalent to pricing bridges that clients can use in order to cross a river. We prove that this problem is APX‐hard. Moreover, we analyze the effect of uniform pricing, proving that it yields both an m approximation and a (1 + lnD)‐approximation. Here, D is upper bounded by the total demand of all clients. In addition, we consider the problem under the additional restriction that the operator must not reject any of the clients. We prove that this problem does not admit approximation algorithms with any reasonable performance guarantee, unless P = NP, and we prove the existence of an n‐approximation algorithm. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
738.
    
We investigate the relative effectiveness of top‐down versus bottom‐up strategies for forecasting the demand of an item that belongs to a product family. The demand for each item in the family is assumed to follow a first‐order univariate autoregressive process. Under the top‐down strategy, the aggregate demand is forecasted by using the historical data of the family demand. The demand forecast for the items is then derived by proportional allocation of the aggregate forecast. Under the bottom‐up strategy, the demand forecast for each item is directly obtained by using the historical demand data of the particular item. In both strategies, the forecasting technique used is exponential smoothing. We analytically evaluate the condition under which one forecasting strategy is preferred over the other when the lag‐1 autocorrelation of the demand time series for all the items is identical. We show that when the lag‐1 autocorrelation is smaller than or equal to 1/3, the maximum difference in the performance of the two forecasting strategies is only 1%. However, if the lag‐1 autocorrelation of the demand for at least one of the items is greater than 1/3, then the bottom‐up strategy consistently outperforms the top‐down strategy, irrespective of the items' proportion in the family and the coefficient of correlation between the item demands. A simulation study reveals that the analytical findings hold even when the lag‐1 autocorrelation of the demand processes is not identical. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   
739.
    
We develop an approximate planning model for a distributed computing network in which a control system oversees the assignment of information flows and tasks to a pool of shared computers, and describe several optimization applications using the model. We assume that the computers are multithreaded, and have differing architectures leading to varying and inconsistent processing rates. The model is based on a discrete‐time, continuous flow model developed by Graves [Oper Res 34 (1986), 522–533] which provides the steady‐state moments of production and work‐in‐queue quantities. We make several extensions to Graves' model to represent distributed computing networks. First, we approximately model control rules that are nonlinear functions of the work‐in‐queue at multiple stations through a linearization approach. Second, we introduce an additional noise term on production and show its use in modeling the discretization of jobs. Third, we model groups of heterogeneous computers as aggregate, “virtual computing cells” that process multiple tasks simultaneously, using a judiciously selected control rule. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
740.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号