首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   41篇
  2021年   2篇
  2019年   8篇
  2018年   4篇
  2017年   5篇
  2016年   13篇
  2015年   14篇
  2014年   9篇
  2013年   59篇
  2012年   9篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   12篇
  2006年   8篇
  2005年   12篇
  2004年   10篇
  2003年   13篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   7篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1981年   1篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
231.
We consider a dynamic lot‐sizing model with production time windows where each of n demands has earliest and latest production due dates and it must be satisfied during the given time window. For the case of nonspeculative cost structure, an O(nlogn) time procedure is developed and it is shown to run in O(n) when demands come in the order of latest production due dates. When the cost structure is somewhat general fixed plus linear that allows speculative motive, an optimal procedure with O(T4) is proposed where T is the length of a planning horizon. Finally, for the most general concave production cost structure, an optimal procedure with O(T5) is designed. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
232.
We formulate exact expressions for the expected values of selected estimators of the variance parameter (that is, the sum of covariances at all lags) of a steady‐state simulation output process. Given in terms of the autocovariance function of the process, these expressions are derived for variance estimators based on the simulation analysis methods of nonoverlapping batch means, overlapping batch means, and standardized time series. Comparing estimator performance in a first‐order autoregressive process and the M/M/1 queue‐waiting‐time process, we find that certain standardized time series estimators outperform their competitors as the sample size becomes large. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
233.
We consider a manufacturer (i.e., a capacitated supplier) that produces to stock and has two classes of customers. The primary customer places orders at regular intervals of time for a random quantity, while the secondary customers request a single item at random times. At a predetermined time the manufacturer receives advance demand information regarding the order size of the primary customer. If the manufacturer is not able to fill the primary customer's demand, there is a penalty. On the other hand, serving the secondary customers results in additional profit; however, the manufacturer can refuse to serve the secondary customers in order to reserve inventory for the primary customer. We characterize the manufacturer's optimal production and stock reservation policies that maximize the manufacturer's discounted profit and the average profit per unit time. We show that these policies are threshold‐type policies, and these thresholds are monotone with respect to the primary customer's order size. Using a numerical study we provide insights into how the value of information is affected by the relative demand size of the primary and secondary customers. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
234.
This article presents an optimum simple step-stress accelerated life test for the Weibull distribution under Type I censoring. It is assumed that a log-linear relationship exists between the Weibull scale parameter and the (possibly transformed) stress and that a certain cumulative exposure model for the effect of changing stress holds. The optimum plan—low stress and stress change time—is obtained, which minimizes the asymptotic variance of the maximum likelihood estimator of a stated percentile at design stress. For selected values of the design parameters, nomographs useful for finding the optimum plan are given, and the effects of errors in preestimates of the parameters are investigated. As an alternative to the simple step-stress test, a three-level compromise plan is proposed, and its performance is studied and compared with that of the optimum simple step-stress test. © 1993 John Wiley & Sons. Inc.  相似文献   
235.
This article analyzes the causes of combat effectiveness of the South Korean security forces through the course of its various counter-insurgency (COIN) operations from 1948 to 1953. We argue that improvements in two interrelated aspects ultimately resulted in higher operational and tactical level performance: unified operational command structure and the subsequent improvements in tactical efficiency under the guidance of the US advisory mission. Through an in-depth case study on how a nascent army improved its capacity in combating homegrown insurgencies, we demonstrate how the actual conduct of operations itself remains just as significant in the assessment of overall COIN outcomes.  相似文献   
236.
There is relatively little formal modeling of the economic effects of armed conflicts even though they have substantial economic effects. We set forth a new model, namely the armed conflict economic impact model – ACEI-Model. The model looks at the economic effects of war in three different stages: (i) pre-conflict stage; (ii) armed conflict stage; and (iii) post-conflict stage. The model is based on economic desgrowth (-δ) and other new conceptual indicators. We evaluate an imaginary armed conflict between China and Japan by applying the ACEI-Model.  相似文献   
237.
We consider the problem of scheduling n independent and simultaneously available jobs without preemption on a single machine, where the machine has a fixed maintenance activity. The objective is to find the optimal job sequence to minimize the total amount of late work, where the late work of a job is the amount of processing of the job that is performed after its due date. We first discuss the approximability of the problem. We then develop two pseudo‐polynomial dynamic programming algorithms and a fully polynomial‐time approximation scheme for the problem. Finally, we conduct extensive numerical studies to evaluate the performance of the proposed algorithms. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 172–183, 2016  相似文献   
238.
We consider the problem of determining the capacity to assign to each arc in a given network, subject to uncertainty in the supply and/or demand of each node. This design problem underlies many real‐world applications, such as the design of power transmission and telecommunications networks. We first consider the case where a set of supply/demand scenarios are provided, and we must determine the minimum‐cost set of arc capacities such that a feasible flow exists for each scenario. We briefly review existing theoretical approaches to solving this problem and explore implementation strategies to reduce run times. With this as a foundation, our primary focus is on a chance‐constrained version of the problem in which α% of the scenarios must be feasible under the chosen capacity, where α is a user‐defined parameter and the specific scenarios to be satisfied are not predetermined. We describe an algorithm which utilizes a separation routine for identifying violated cut‐sets which can solve the problem to optimality, and we present computational results. We also present a novel greedy algorithm, our primary contribution, which can be used to solve for a high quality heuristic solution. We present computational analysis to evaluate the performance of our proposed approaches. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 236–246, 2016  相似文献   
239.
The warehouse problem with deterministic production cost, selling prices, and demand was introduced in the 1950s and there is a renewed interest recently due to its applications in energy storage and arbitrage. In this paper, we consider two extensions of the warehouse problem and develop efficient computational algorithms for finding their optimal solutions. First, we consider a model where the firm can invest in capacity expansion projects for the warehouse while simultaneously making production and sales decisions in each period. We show that this problem can be solved with a computational complexity that is linear in the product of the length of the planning horizon and the number of capacity expansion projects. We then consider a problem in which the firm can invest to improve production cost efficiency while simultaneously making production and sales decisions in each period. The resulting optimization problem is non‐convex with integer decision variables. We show that, under some mild conditions on the cost data, the problem can be solved in linear computational time. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 367–373, 2016  相似文献   
240.
In order‐quantity reorder‐point formulations for inventory items where backordering is allowed, some of the more common ways to prevent excessive stockouts in an optimal solution are to impose either a cost per unit short, a cost per stockout occasion, or a target fill rate. We show that these popular formulations, both exact and approximate, can become “degenerate” even with quite plausible parameters. By degeneracy we mean any situation in which the formulation either cannot be solved, leads to nonsensical “optimal” solutions, or becomes equivalent to something substantially simpler. We explain the reasons for the degeneracies, yielding new insight into these models, and we provide practical advice for inventory managers. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 686–705, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10037  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号