首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3332篇
  免费   84篇
  国内免费   1篇
  3417篇
  2021年   38篇
  2019年   89篇
  2018年   52篇
  2017年   80篇
  2016年   79篇
  2015年   61篇
  2014年   67篇
  2013年   705篇
  2010年   36篇
  2009年   38篇
  2008年   48篇
  2007年   52篇
  2006年   36篇
  2005年   42篇
  2004年   56篇
  2003年   42篇
  2002年   57篇
  1999年   41篇
  1998年   46篇
  1997年   47篇
  1996年   61篇
  1995年   41篇
  1994年   59篇
  1993年   63篇
  1992年   58篇
  1991年   74篇
  1990年   39篇
  1989年   72篇
  1988年   78篇
  1987年   68篇
  1986年   70篇
  1985年   64篇
  1984年   37篇
  1983年   42篇
  1982年   43篇
  1981年   46篇
  1980年   51篇
  1979年   45篇
  1978年   49篇
  1977年   45篇
  1976年   45篇
  1975年   46篇
  1974年   52篇
  1973年   50篇
  1972年   52篇
  1971年   43篇
  1970年   40篇
  1969年   40篇
  1968年   34篇
  1967年   34篇
排序方式: 共有3417条查询结果,搜索用时 15 毫秒
981.
This article proposes new location models for emergency medical service stations. The models are generated by incorporating a survival function into existing covering models. A survival function is a monotonically decreasing function of the response time of an emergency medical service (EMS) vehicle to a patient that returns the probability of survival for the patient. The survival function allows for the calculation of tangible outcome measures—the expected number of survivors in case of cardiac arrests. The survival‐maximizing location models are better suited for EMS location than the covering models which do not adequately differentiate between consequences of different response times. We demonstrate empirically the superiority of the survival‐maximizing models using data from the Edmonton EMS system. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
982.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
983.
Facility location models have been applied to problems in the public and private sectors for years. In this article, the author first presents a taxonomy of location problems based on the underlying space in which the problem is embedded. The article illustrates problems from each part of the taxonomy with an emphasis on discrete location problems. Selected recent research in the area is also discussed. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
984.
We consider a processing network in which jobs arrive at a fork‐node according to a renewal process. Each job requires the completion of m tasks, which are instantaneously assigned by the fork‐node to m task‐processing nodes that operate like G/M/1 queueing stations. The job is completed when all of its m tasks are finished. The sojourn time (or response time) of a job in this G/M/1 fork‐join network is the total time it takes to complete the m tasks. Our main result is a closed‐form approximation of the sojourn‐time distribution of a job that arrives in equilibrium. This is obtained by the use of bounds, properties of D/M/1 and M/M/1 fork‐join networks, and exploratory simulations. Statistical tests show that our approximation distributions are good fits for the sojourn‐time distributions obtained from simulations. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
985.
Derivatives (or gradients) are important for both sensitivity analysis and optimization, and in simulation models, these can often be estimated efficiently using various methods other than brute‐force finite differences. This article briefly summarizes the main approaches and discusses areas in which the approaches can most fruitfully be applied: queueing, inventory, and finance. In finance, the focus is on derivatives of another sort. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
986.
987.
988.
Position finding has historically been carried out by calculating the coordinates of the mean position via a least-squares procedure based on the distance of the position from several direction lines. It has been suggested that the least-squares procedure assigns too much weight to outliers among the set of direction lines, outliers which may actually be associated with objects other than the one being located. In this paper, a method of using least-absolute deviations, which yields a more outlier-resistant median estimate of the position instead of the least-squares mean estimate, is presented.  相似文献   
989.
A policy of periodic replacement with minimal repair at failure is considered for a complex system. Under such a policy the system is replaced at multiples of some period T while minimal repair is performed at any intervening system failures. The cost of a minimal repair to the system is assumed to be a nonde-creasing function of its age. A simple expression is derived for the expected minimal repair cost in an interval in terms of the cost function and the failure rate of the system. Necessary and sufficient conditions for the existence of an optimal replacement interval are exhibited in the case where the system life distribution is strictly increasing failure rate (IFR).  相似文献   
990.
This paper describes the background of the Office of Management Budget Circular A-21, “Principles for Determining Costs Applicable to Grants, Contracts, and Other Agreements with Educational Institutions,” that describes the requirement for effort reporting. A sampling procedure is proposed as an alternative to 100% reporting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号