首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   11篇
  2021年   3篇
  2020年   4篇
  2019年   7篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   7篇
  2014年   3篇
  2013年   27篇
  2012年   2篇
  2011年   6篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  1999年   9篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1984年   3篇
  1982年   2篇
  1981年   5篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   4篇
  1969年   3篇
  1968年   3篇
  1967年   1篇
  1966年   2篇
  1948年   1篇
排序方式: 共有197条查询结果,搜索用时 46 毫秒
11.
A general age replacement is introduced which incorporates minimal repair, planned and unplanned replacements, and costs which depend on time. Finite and infinite horizon results are obtained. Various special cases are considered. Furthermore, a shock model with general cost structure is considered.  相似文献   
12.
We consider the problem of sequencing n jobs on a single machine, with each job having a processing time and a common due date. The common due date is assumed to be so large that all jobs can complete by the due date. It is known that there is an O(n log n)‐time algorithm for finding a schedule with minimum total earliness and tardiness. In this article, we consider finding a schedule with dual criteria. The primary goal is to minimize the total earliness and tardiness. The secondary goals are to minimize: (1) the maximum earliness and tardiness; (2) the sum of the maximum of the squares of earliness and tardiness; (3) the sum of the squares of earliness and tardiness. For the first two criteria, we show that the problems are NP‐hard and we give a fully polynomial time approximation scheme for both of them. For the last two criteria, we show that the ratio of the worst schedule versus the best schedule is no more than . © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 422–431, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10020  相似文献   
13.
In this article, we consider the concurrent open shop scheduling problem to minimize the total weighted completion time. When the number of machines is arbitrary, the problem has been shown to be inapproximable within a factor of 4/3 ‐ ε for any ε > 0 if the unique games conjecture is true in the literature. We propose a polynomial time approximation scheme for the problem under the restriction that the number of machines is fixed. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
14.
In this article, we discuss the optimal allocation problem in a multiple stress levels life‐testing experiment when an extreme value regression model is used for statistical analysis. We derive the maximum likelihood estimators, the Fisher information, and the asymptotic variance–covariance matrix of the maximum likelihood estimators. Three optimality criteria are defined and the optimal allocation of units for two‐ and k‐stress level situations are determined. We demonstrate the efficiency of the optimal allocation of units in a multiple stress levels life‐testing experiment by using real experimental situations discussed earlier by McCool and Nelson and Meeker. Monte Carlo simulations are used to show that the optimality results hold for small sample sizes as well. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
15.
We consider the problem of scheduling a set of n jobs on a single batch machine, where several jobs can be processed simultaneously. Each job j has a processing time pj and a size sj. All jobs are available for processing at time 0. The batch machine has a capacity D. Several jobs can be batched together and processed simultaneously, provided that the total size of the jobs in the batch does not exceed D. The processing time of a batch is the largest processing time among all jobs in the batch. There is a single vehicle available for delivery of the finished products to the customer, and the vehicle has capacity K. We assume that K = rD, where and r is an integer. The travel time of the vehicle is T; that is, T is the time from the manufacturer to the customer. Our goal is to find a schedule of the jobs and a delivery plan so that the service span is minimized, where the service span is the time that the last job is delivered to the customer. We show that if the jobs have identical sizes, then we can find a schedule and delivery plan in time such that the service span is minimum. If the jobs have identical processing times, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most 11/9 times the optimal service span. When the jobs have arbitrary processing times and arbitrary sizes, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most twice the optimal service span. We also derive upper bounds of the absolute worst‐case ratios in both cases. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 470–482, 2015  相似文献   
16.
17.
18.
This paper presents a model for choosing a minimum-cost mix of strategic defenses to assure that specified production capacities for several economic sectors survive after a nuclear attack. The defender selects a mix of strategic defenses for each of several geographic regions. The attacker chooses an allocation of attacking weapons to geographic regions, within specified weapon inventories. The attack is optimized against any economic sector. This formulation allows the defense planner the capability to assess the results of the optimal defense structure for a “worst case” attack. The model is a mathematical program with nonlinear programming problems in the constraints; an example of its application is given and is solved using recently developed optimization techniques.  相似文献   
19.
This paper considers the problem of computing optimal ordering policies for a product that has a life of exactly two periods when demand is random. Initially costs are charged against runouts (stockouts) and outdating (perishing). By charging outdating costs according to the expected amount of outdating one period into the future, a feasible one period model is constructed. The central theorem deals with the n-stage dynamic problem and demonstrates the appropriate cost functions are convex in the decision variable and also provides bounds on certain derivatives. The model is then generalized to include ordering and holding costs. The paper is concluded with a discussion of the infinite horizon problem.  相似文献   
20.
We consider a single-machine scheduling model in which the job processing times are controllable variables with linear costs. The objective is to minimize the sum of the cost incurred in compressing job processing times and the cost associated with the number of late jobs. The problem is shown to be NP-hard even when the due dates of all jobs are identical. We present a dynamic programming solution algorithm and a fully polynomial approximation scheme for the problem. Several efficient heuristics are proposed for solving the problem. Computational experiments demonstrate that the heuristics are capable of producing near-optimal solutions quickly. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 67–82, 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号