首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   40篇
  2021年   1篇
  2019年   7篇
  2018年   2篇
  2017年   6篇
  2016年   13篇
  2015年   14篇
  2014年   11篇
  2013年   65篇
  2012年   9篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   13篇
  2006年   7篇
  2005年   11篇
  2004年   7篇
  2003年   11篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   8篇
  1993年   1篇
  1988年   1篇
排序方式: 共有235条查询结果,搜索用时 250 毫秒
121.
This article deals with a two‐person zero‐sum game in which player I chooses in integer interval [1, N] two integer intervals consisting of p and q points where p + q < N, and player II chooses an integer point in [1, N]. The payoff to player I equals 1 if the point chosen by player II is at least in one of the intervals chosen by player II and 0 otherwise. This paper complements the results obtained by Ruckle, Baston and Bostock, Lee, Garnaev, and Zoroa, Zoroa and Fernández‐Sáez. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 98–106, 2001  相似文献   
122.
This article addresses the inventory placement problem in a serial supply chain facing a stochastic demand for a single planning period. All customer demand is served from stage 1, where the product is stored in its final form. If the demand exceeds the supply at stage 1, then stage 1 is resupplied from stocks held at the upstream stages 2 through N, where the product may be stored in finished form or as raw materials or subassemblies. All stocking decisions are made before the demand occurs. The demand is nonnegative and continuous with a known probability distribution, and the purchasing, holding, shipping, processing, and shortage costs are proportional. There are no fixed costs. All unsatisfied demand is lost. The objective is to select the stock quantities that should be placed different stages so as to maximize the expected profit. Under reasonable cost assumptions, this leads to a convex constrained optimization problem. We characterize the properties of the optimal solution and propose an effective algorithm for its computation. For the case of normal demands, the calculations can be done on a spreadsheet. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:506–517, 2001  相似文献   
123.
Most papers in the scheduling field assume that a job can be processed by only one machine at a time. Namely, they use a one‐job‐on‐one‐machine model. In many industry settings, this may not be an adequate model. Motivated by human resource planning, diagnosable microprocessor systems, berth allocation, and manufacturing systems that may require several resources simultaneously to process a job, we study the problem with a one‐job‐on‐multiple‐machine model. In our model, there are several alternatives that can be used to process a job. In each alternative, several machines need to process simultaneously the job assigned. Our purpose is to select an alternative for each job and then to schedule jobs to minimize the completion time of all jobs. In this paper, we provide a pseudopolynomial algorithm to solve optimally the two‐machine problem, and a combination of a fully polynomial scheme and a heuristic to solve the three‐machine problem. We then extend the results to a general m‐machine problem. Our algorithms also provide an effective lower bounding scheme which lays the foundation for solving optimally the general m‐machine problem. Furthermore, our algorithms can also be applied to solve a special case of the three‐machine problem in pseudopolynomial time. Both pseudopolynomial algorithms (for two‐machine and three‐machine problems) are much more efficient than those in the literature. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 57–74, 1999  相似文献   
124.
Inventory control of products with finite lifetimes is important in many modern business organizations. It has been an important and difficult research subject. Here, we study the (s, S) continuous review model for items with an exponential random lifetime and a general renewal demand process through a Markov process. We derive a fundamental rate conservation theorem and show that all the other system performance measures can be obtained easily through the expected reorder cycle length. This leads to a simple expression for the total expected long run cost rate function in terms of the expected reorder cycle length. Subsequently, we derive formulas for computing the expected cycle lengths for the general renewal demand as well as for a large class of demands characterized by the phase type interdemand time distribution. We show analytically when the cost as a function of the reorder level is monotone, concave, or convex. We also show analytically that, depending on the behavior of the expected reorder cycle, the cost as a function of the order‐up level is either monotone increasing or unimodal. These analytical properties enable us to understand the problem and make the subsequent numerical optimization much easier. Numerical studies confirm and illustrate some of the analytical properties. The results also demonstrate the impact of various parameters on the optimal policy and the cost. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 39–56, 1999  相似文献   
125.
We consider in this paper the coordinated replenishment dynamic lot‐sizing problem when quantity discounts are offered. In addition to the coordination required due to the presence of major and minor setup costs, a separate element of coordination made possible by the offer of quantity discounts needs to be considered as well. The mathematical programming formulation for the incremental discount version of the extended problem and a tighter reformulation of the problem based on variable redefinition are provided. These then serve as the basis for the development of a primal‐dual based approach that yields a strong lower bound for our problem. This lower bound is then used in a branch and bound scheme to find an optimal solution to the problem. Computational results for this optimal solution procedure are reported in the paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 686–695, 2000  相似文献   
126.
This article studies the inventory competition under yield uncertainty. Two firms with random yield compete for substitutable demand: If one firm suffers a stockout, which can be caused by yield failure, its unsatisfied customers may switch to its competitor. We first study the case in which two competing firms decide order quantities based on the exogenous reliability levels. The results from the traditional inventory competition are generalized to the case with yield uncertainty and we find that quantity and reliability can be complementary instruments in the competition. Furthermore, we allow the firms to endogenously improve their yield reliability before competing in quantity. We show that the reliability game is submodular under some assumptions. The results indicate that the competition in quantity can discourage the reliability improvement. With an extensive numerical study, we also demonstrate the robustness of our analytical results in more general settings. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 107–126, 2015  相似文献   
127.
An important phenomenon often observed in supply chain management, known as the bullwhip effect, implies that demand variability increases as one moves up the supply chain, i.e., as one moves away from customer demand. In this paper we quantify this effect for simple, two‐stage, supply chains consisting of a single retailer and a single manufacturer. We demonstrate that the use of an exponential smoothing forecast by the retailer can cause the bullwhip effect and contrast these results with the increase in variability due to the use of a moving average forecast. We consider two types of demand processes, a correlated demand process and a demand process with a linear trend. We then discuss several important managerial insights that can be drawn from this research. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 269–286, 2000  相似文献   
128.
In this paper, we develop an iterative piecewise linear approximation approach with a novel initialization method to solve natural gas pipeline transmission problems with the nonuniform network elevation. Previous approaches, such as energy minimization methods, cannot be applied to solve problems with the nonuniform network elevation because they exclude pressure range constraints, and thus provide solutions far from optimum. We propose a new initialization model that considers pressure range constraints and improves the optimality of the solutions and the computational efficiency. Furthermore, we extend the energy minimization methods and provide the necessary conditions under which the extended methods operate in networks with the nonuniform elevation. We test the performances of the methods with previously reported pipeline networks from the literature, with the open data set GasLib, and with our industrial collaborator. The initialization approach is shown to be more efficient than the method with fixed initial breakpoints. The newly proposed initialization approach generates solutions with a higher accuracy than the extended energy minimization methods, especially in large‐size networks. The proposed method has been applied to natural gas transmission planning by the China National Petroleum Corporation and has brought a direct profit increase of 330 million U.S. dollars in 2015‐2017.  相似文献   
129.
Multi‐issue allocation situations study problems where an estate must be divided among a group of agents. The claim of each agent is a vector specifying the amount claimed by each agent on each issue. We present a two‐stage rule. First, we divide the estate among the issues following the constrained equal awards rule. Second, the amount assigned to each issue is divided among the agents in proportion to their demands on this issue. We apply the rule to two real‐world problems: the distribution of natural resources between countries and the distribution of budget for education and research between universities.  相似文献   
130.
This paper presents a branch and bound algorithm for computing optimal replacement policies in a discrete‐time, infinite‐horizon, dynamic programming model of a binary coherent system with n statistically independent components, and then specializes the algorithm to consecutive k‐out‐of‐n systems. The objective is to minimize the long‐run expected average undiscounted cost per period. (Costs arise when the system fails and when failed components are replaced.) An earlier paper established the optimality of following a critical component policy (CCP), i.e., a policy specified by a critical component set and the rule: Replace a component if and only if it is failed and in the critical component set. Computing an optimal CCP is a optimization problem with n binary variables and a nonlinear objective function. Our branch and bound algorithm for solving this problem has memory storage requirement O(n) for consecutive k‐out‐of‐n systems. Extensive computational experiments on such systems involving over 350,000 test problems with n ranging from 10 to 150 find this algorithm to be effective when n ≤ 40 or k is near n. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 288–302, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10017  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号