首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   39篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   6篇
  2016年   10篇
  2015年   14篇
  2014年   10篇
  2013年   61篇
  2012年   9篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   11篇
  2006年   7篇
  2005年   11篇
  2004年   7篇
  2003年   11篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1993年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
221.
We consider the problem of scheduling n independent and simultaneously available jobs without preemption on a single machine, where the machine has a fixed maintenance activity. The objective is to find the optimal job sequence to minimize the total amount of late work, where the late work of a job is the amount of processing of the job that is performed after its due date. We first discuss the approximability of the problem. We then develop two pseudo‐polynomial dynamic programming algorithms and a fully polynomial‐time approximation scheme for the problem. Finally, we conduct extensive numerical studies to evaluate the performance of the proposed algorithms. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 172–183, 2016  相似文献   
222.
We consider the problem of determining the capacity to assign to each arc in a given network, subject to uncertainty in the supply and/or demand of each node. This design problem underlies many real‐world applications, such as the design of power transmission and telecommunications networks. We first consider the case where a set of supply/demand scenarios are provided, and we must determine the minimum‐cost set of arc capacities such that a feasible flow exists for each scenario. We briefly review existing theoretical approaches to solving this problem and explore implementation strategies to reduce run times. With this as a foundation, our primary focus is on a chance‐constrained version of the problem in which α% of the scenarios must be feasible under the chosen capacity, where α is a user‐defined parameter and the specific scenarios to be satisfied are not predetermined. We describe an algorithm which utilizes a separation routine for identifying violated cut‐sets which can solve the problem to optimality, and we present computational results. We also present a novel greedy algorithm, our primary contribution, which can be used to solve for a high quality heuristic solution. We present computational analysis to evaluate the performance of our proposed approaches. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 236–246, 2016  相似文献   
223.
The warehouse problem with deterministic production cost, selling prices, and demand was introduced in the 1950s and there is a renewed interest recently due to its applications in energy storage and arbitrage. In this paper, we consider two extensions of the warehouse problem and develop efficient computational algorithms for finding their optimal solutions. First, we consider a model where the firm can invest in capacity expansion projects for the warehouse while simultaneously making production and sales decisions in each period. We show that this problem can be solved with a computational complexity that is linear in the product of the length of the planning horizon and the number of capacity expansion projects. We then consider a problem in which the firm can invest to improve production cost efficiency while simultaneously making production and sales decisions in each period. The resulting optimization problem is non‐convex with integer decision variables. We show that, under some mild conditions on the cost data, the problem can be solved in linear computational time. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 367–373, 2016  相似文献   
224.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号