首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   3篇
  2021年   3篇
  2019年   3篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   59篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1999年   3篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   8篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   5篇
  1974年   5篇
  1973年   6篇
  1972年   5篇
  1971年   8篇
  1970年   3篇
  1969年   5篇
  1968年   5篇
  1967年   2篇
  1966年   2篇
  1948年   3篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
121.
122.
123.
Modeling R&D as standard sequential search, we consider a monopolist who can implement a sequence of technological discoveries during the technology search process: he earns revenue on his installed technology while he engages in R&D to find improved technology. What is not standard is that he has a finite number of opportunities to introduce improved technology. We show that his optimal policy is characterized by thresholds ξi(x): introduce the newly found technology if and only if it exceeds ξi(x) when x is the state of the currently installed technology and i is the number of remaining introductions allowed. We also analyze a nonstationary learning‐by‐doing model in which the monopolist's experience in implementing new technologies imparts increased capability in generating new technologies. Because this nonstationary model is not in the class of monotone stopping problems, a number of surprising results hold and several seemingly obvious properties of the stationary model no longer hold. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
124.
We develop models that lend insight into how to design systems that enjoy economies of scale in their operating costs, when those systems will subsequently face disruptions from accidents, acts of nature, or an intentional attack from a well‐informed attacker. The systems are modeled as parallel M/M/1 queues, and the key question is how to allocate service capacity among the queues to make the system resilient to worst‐case disruptions. We formulate this problem as a three‐level sequential game of perfect information between a defender and a hypothetical attacker. The optimal allocation of service capacity to queues depends on the type of attack one is facing. We distinguish between deterministic incremental attacks, where some, but not all, of the capacity of each attacked queue is knocked out, and zero‐one random‐outcome (ZORO) attacks, where the outcome is random and either all capacity at an attacked queue is knocked out or none is. There are differences in the way one should design systems in the face of incremental or ZORO attacks. For incremental attacks it is best to concentrate capacity. For ZORO attacks the optimal allocation is more complex, typically, but not always, involving spreading the service capacity out somewhat among the servers. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
125.
In this paper we study a capacity allocation problem for two firms, each of which has a local store and an online store. Customers may shift among the stores upon encountering a stockout. One question facing each firm is how to allocate its finite capacity (i.e., inventory) between its local and online stores. One firm's allocation affects the decision of the rival, thereby creating a strategic interaction. We consider two scenarios of a single‐product single‐period model and derive corresponding existence and stability conditions for a Nash equilibrium. We then conduct sensitivity analysis of the equilibrium solution with respect to price and cost parameters. We also prove the existence of a Nash equilibrium for a generalized model in which each firm has multiple local stores and a single online store. Finally, we extend the results to a multi‐period model in which each firm decides its total capacity and allocates this capacity between its local and online stores. A myopic solution is derived and shown to be a Nash equilibrium solution of a corresponding “sequential game.” © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
126.
127.
In a recent article we demonstrated that implicit optimal modeling for shift scheduling (P2) has inherent size and execution time advantages over the general set-covering formulation for shift scheduling (P1) [11, 13]. We postulated that the absence of extraordinary overlap (EO) was a requirement for the equivalence of P1 and P2. We have defined EO as the condition in which the earliest and latest starts for a break in one shift are earlier and later than the earliest and latest starts for a break in any other shift(s). In this article, we prove that our earlier postulate was accurate. Additionally, we discuss research extensions and note other scheduling problems for which implicit modeling may be appropriate. © 1996 John Wiley & Sons, Inc.  相似文献   
128.
Facility location problems in the plane are among the most widely used tools of Mathematical Programming in modeling real-world problems. In many of these problems restrictions have to be considered which correspond to regions in which a placement of new locations is forbidden. We consider center and median problems where the forbidden set is a union of pairwise disjoint convex sets. As applications we discuss the assembly of printed circuit boards, obnoxious facility location and the location of emergency facilities. © 1995 John Wiley & Sons, Inc.  相似文献   
129.
130.
Technologically advanced aircraft rely on robust and responsive logistics systems to ensure a high state of operational readiness. This paper fills a critical gap in the literature for combat models by closely relating effectiveness of the logistics system to determinants of success in combat. We present a stochastic diffusion model of an aerial battle between Blue and Red forces. The number of aircraft of Blue forces aloft and ready to be aloft on combat missions is limited by the maximum number of assigned aircraft, the reliability of aircraft subsystems, and the logistic system's ability to repair and replenish those subsystems. Our parsimonious model can illustrate important trade‐offs between logistics decision variables and operational success.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号