首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   9篇
  240篇
  2021年   4篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2014年   6篇
  2013年   33篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   9篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   10篇
  1987年   4篇
  1986年   7篇
  1985年   9篇
  1984年   8篇
  1983年   2篇
  1982年   3篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1976年   2篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   7篇
  1970年   3篇
  1969年   4篇
  1968年   3篇
  1967年   2篇
排序方式: 共有240条查询结果,搜索用时 0 毫秒
11.
This paper considers the problem of computing optimal ordering policies for a product that has a life of exactly two periods when demand is random. Initially costs are charged against runouts (stockouts) and outdating (perishing). By charging outdating costs according to the expected amount of outdating one period into the future, a feasible one period model is constructed. The central theorem deals with the n-stage dynamic problem and demonstrates the appropriate cost functions are convex in the decision variable and also provides bounds on certain derivatives. The model is then generalized to include ordering and holding costs. The paper is concluded with a discussion of the infinite horizon problem.  相似文献   
12.
This article addresses the problem of explicitly taking into account uncertainty about the demand for spare parts in making inventory procurement and stockage decisions. The model described provides for a unified treatment of the closely related problems of statistical estimation of demand and resource allocation within the inventory system, and leads to an easily implemented, efficient method of determining requirements for spare parts both in the early provisioning phase and in later periods of operations when demand data have accumulated Analyses of the model's theoretical foundations and of sample outcomes of the model based upon data on parts intended for use in the F-14 lead to conclusions of great importance to both support planners and operations planners Finally, of particular significance is the ability afforded the planner by this model to quantify the impact on inventory system costs of varying levels of system reliability or management uncertainty as to projected system performance. This will provide an economic basis for analysis of such alternatives as early deployment, operational testing, and equipment redesign.  相似文献   
13.
In this article we consider a single-server system whose customers arrive by appointments only. Both static and dynamic scheduling problems are studied. In static scheduling problems, one considers scheduling a finite number of customer arrivals, assuming there is no scheduled customer arrival to the system. In dynamic scheduling problems, one considers scheduling one customer arrival only, assuming that there are a number of scheduled customers already. The expected delay time is recursively computed in terms of customer interarrival times for both cases. The objective is to minimize the weighted customer delay time and the server completion time. The problem is formulated as a set of nonlinear equations. Various numerical examples are illustrated. © 1993 John Wiley & Sons, Inc.  相似文献   
14.
15.
Variations of Hale's channel assignment problem, the L(j, k)‐labeling problem and the radio labeling problem require the assignment of integers to the vertices of a graph G subject to various distance constraints. The λj,k‐number of G and the radio number of G are respectively the minimum span among all L(j, k)‐labelings, and the minimum span plus 1 of all radio labelings of G (defined in the Introduction). In this paper, we establish the λj,k‐number of ∏ K for pairwise relatively prime integers t1 < t2 < … < tq, t1 ≥ 2. We also show the existence of an infinite class of graphs G with radio number |V(G)| for any diameter d(G). © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
16.
The minimum storage‐time sequencing problem generalizes many well‐known problems in combinatorial optimization, such as the directed linear arrangement and the problem of minimizing the weighted sum of completion times, subject to precedence constraints on a single processor. In this paper we propose a new lower bound, based on a Lagrangian relaxation, which can be computed very efficiently. To improve upon this lower bound, we employ a bundle optimization algorithm. We also show that the best bound obtainable by this approach equals the one obtainable from the linear relaxation computed on a formulation whose first Chvàtal closure equals the convex hull of all the integer solutions of the problem. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 313–331, 2001  相似文献   
17.
Blue strike aircraft enter region ? to attack Red targets. In Case 1, Blue conducts (preplanned) SEAD to establish air superiority. In the (reactive) SEAD scenario, which is Case 2, such superiority is already in place, but is jeopardized by prohibitive interference from Red, which threatens Blue's ability to conduct missions. We utilize both deterministic and stochastic models to explore optimal tactics for Red in such engagements. Policies are developed which will guide both Red's determination of the modes of operation of his engagement radar, and his choice of Blue opponent to target next. An index in the form of a simple transaction kill ratio plays a major role throughout. Published 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 723–742, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10046  相似文献   
18.
We address the problem of dispatching a vehicle with different product classes. There is a common dispatch cost, but holding costs that vary by product class. The problem exhibits multidimensional state, outcome and action spaces, and as a result is computationally intractable using either discrete dynamic programming methods, or even as a deterministic integer program. We prove a key structural property for the decision function, and exploit this property in the development of continuous value function approximations that form the basis of an approximate dispatch rule. Comparisons on single product‐class problems, where optimal solutions are available, demonstrate solutions that are within a few percent of optimal. The algorithm is then applied to a problem with 100 product classes, and comparisons against a carefully tuned myopic heuristic demonstrate significant improvements. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 742–769, 2003.  相似文献   
19.
This paper analyzes the problem of determining desirable spares inventory levels for repairable items with dependent repair times. The problem is important for repairable products such as aircraft engines which can have very large investment in spares inventory levels. While existing models can be used to determine optimal inventory spares levels when repair times are independent, the practical considerations of limited repair shop capacity and prioritized shop dispatching rules combine to make repair times not independent of one another. In this research a simulation model of a limited capacity repair facility with prioritized scheduling is used to explore a variety of heuristic approaches to the spares stocking decision. The heuristics are also compared with use of a model requiring independent repair times (even though that assumption is not valid here). The results show that even when repair time dependencies are present, the performance of a model which assumes independent repair times is quite good.  相似文献   
20.
In this paper, we derive new families of facet‐defining inequalities for the finite group problem and extreme inequalities for the infinite group problem using approximate lifting. The new valid inequalities for the finite group problem include two‐ and three‐slope facet‐defining inequalities as well as the first family of four‐slope facet‐defining inequalities. The new valid inequalities for the infinite group problem include families of two‐ and three‐slope extreme inequalities. These new inequalities not only illustrate the diversity of strong inequalities for the finite and infinite group problems, but also provide a large variety of new cutting planes for solving integer and mixed‐integer programming problems. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号