首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   468篇
  免费   15篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   5篇
  2017年   9篇
  2016年   9篇
  2015年   8篇
  2014年   9篇
  2013年   99篇
  2011年   5篇
  2009年   4篇
  2007年   7篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2002年   8篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   10篇
  1997年   11篇
  1996年   8篇
  1995年   12篇
  1994年   13篇
  1993年   12篇
  1992年   12篇
  1991年   14篇
  1990年   6篇
  1989年   4篇
  1988年   8篇
  1987年   9篇
  1986年   4篇
  1985年   9篇
  1984年   9篇
  1983年   6篇
  1982年   6篇
  1981年   9篇
  1980年   9篇
  1979年   11篇
  1978年   7篇
  1977年   5篇
  1976年   7篇
  1975年   8篇
  1974年   7篇
  1973年   8篇
  1972年   8篇
  1971年   6篇
  1969年   6篇
  1968年   5篇
  1967年   4篇
排序方式: 共有483条查询结果,搜索用时 15 毫秒
181.
We study a deterministic two‐machine flowshop scheduling problem with an assumption that one of the two machines is not available in a specified time period. This period can be due to a breakdown, preventive maintenance, or processing unfinished jobs from a previous planning horizon. The problem is known to be NP‐hard. Pseudopolynomial dynamic programming algorithms and heuristics with worst case error bounds are given in the literature to solve the problem. They are different for the cases when the unavailability interval is for the first or second machine. The existence of a fully polynomial time approximation scheme (FPTAS) was formulated as an open conjecture in the literature. In this paper, we show that the two cases of the problem under study are equivalent to similar partition type problems. Then we derive a generic FPTAS for the latter problems with O(n54) time complexity. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
182.
In this paper we consider the problem of scheduling a set of jobs on a single machine on which a rate‐modifying activity may be performed. The rate‐modifying activity is an activity that changes the production rate of the machine. So the processing time of a job is a variable, which depends on whether it is scheduled before or after the rate‐modifying activity. We assume that the rate‐modifying activity can take place only at certain predetermined time points, which is a constrained case of a similar problem discussed in the literature. The decisions under consideration are whether and when to schedule the rate‐modifying activity, and how to sequence the jobs in order to minimize some objectives. We study the problems of minimizing makespan and total completion time. We first analyze the computational complexity of both problems for most of the possible versions. The analysis shows that the problems are NP‐hard even for some special cases. Furthermore, for the NP‐hard cases of the makespan problem, we present a pseudo‐polynomial time optimal algorithm and a fully polynomial time approximation scheme. For the total completion time problem, we provide a pseudo‐polynomial time optimal algorithm for the case with agreeable modifying rates. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
183.
This article examines US Army psychological operations (PsyOp) as practiced during the waning years of the Cold War in Latin America. Certain themes, especially legitimacy, in-group/out-group, and safety/fear are demonstrated to be recurrent in regional PsyOp campaigns, largely because they seem to activate rich inference systems in the human brain. Yet anthropologists and other scholars of Latin America have paid little attention to military PsyOp. Despite our natural susceptibilities, we can best evaluate propaganda (and other claims to knowledge) by following the advice of Karl Popper: competing theories, including politically loaded ones, should always be explanatory and subject to criticism.  相似文献   
184.
Stochastic dynamic programming models are attractive for multireservoir control problems because they allow non‐linear features to be incorporated and changes in hydrological conditions to be modeled as Markov processes. However, with the exception of the simplest cases, these models are computationally intractable because of the high dimension of the state and action spaces involved. This paper proposes a new method of determining an operating policy for a multireservoir control problem that uses stochastic dynamic programming, but is practical for systems with many reservoirs. Decomposition is first used to reduce the problem to a number of independent subproblems. Each subproblem is formulated as a low‐dimensional stochastic dynamic program and solved to determine the operating policy for one of the reservoirs in the system. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
185.
We deal with the problem of minimizing makespan on a single batch processing machine. In this problem, each job has both processing time and size (capacity requirement). The batch processing machine can process a number of jobs simultaneously as long as the total size of these jobs being processed does not exceed the machine capacity. The processing time of a batch is just the processing time of the longest job in the batch. An approximation algorithm with worst‐case ratio 3/2 is given for the version where the processing times of large jobs (with sizes greater than 1/2) are not less than those of small jobs (with sizes not greater than 1/2). This result is the best possible unless P = NP. For the general case, we propose an approximation algorithm with worst‐case ratio 7/4. A number of heuristics by Uzosy are also analyzed and compared. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 226–240, 2001  相似文献   
186.
We consider a container terminal discharging containers from a ship and locating them in the terminal yard. Each container has a number of potential locations in the yard where it can be stored. Containers are moved from the ship to the yard using a fleet of vehicles, each of which can carry one container at a time. The problem is to assign each container to a yard location and dispatch vehicles to the containers so as to minimize the time it takes to download all the containers from the ship. We show that the problem is NP‐hard and develop a heuristic algorithm based on formulating the problem as an assignment problem. The effectiveness of the heuristic is analyzed from both worst‐case and computational points of view. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 363–385, 2001  相似文献   
187.
188.
We consider scheduling problems involving two agents (agents A and B), each having a set of jobs that compete for the use of a common machine to process their respective jobs. The due dates of the A‐jobs are decision variables, which are determined by using the common (CON) or slack (SLK) due date assignment methods. Each agent wants to minimize a certain performance criterion depending on the completion times of its jobs only. Under each due date assignment method, the criterion of agent A is always the same, namely an integrated criterion consisting of the due date assignment cost and the weighted number of tardy jobs. Several different criteria are considered for agent B, including the maxima of regular functions (associated with each job), the total (weighted) completion time, and the weighted number of tardy jobs. The overall objective is to minimize the performance criterion of agent A, while keeping the objective value of agent B no greater than a given limit. We analyze the computational complexity, and devise polynomial or pseudo‐polynomial dynamic programming algorithms for the considered problems. We also convert, if viable, any of the devised pseudopolynomial dynamic programming algorithms into a fully polynomial‐time approximation scheme. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 416–429, 2016  相似文献   
189.
We consider the multiperiod lot-sizing problem in which the production yield (the proportion of usable goods) is variable according to a known probability distribution. We review two economic order quantity (EOQ) models for the stationary demand continuous-time problem and derive an EOQ model when the production yield follows a binomial distribution and backlogging of demand is permitted. A dynamic programming algorithm for an arbitrary sequence of demand requirements is presented. Heuristics based on both the EOQ model and appropriate modification of the underlying perfect-yield lot-sizing policies are discussed, and extensive computational evaluation of these heuristics is presented. Two of these heuristics are then modified to include the notion of supply safety stock. The modified heuristics consistently produce near-optimal lot-sizing policies for problems with stationary and time-varying demands.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号