首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   0篇
  490篇
  2021年   11篇
  2019年   20篇
  2018年   10篇
  2017年   10篇
  2016年   11篇
  2015年   11篇
  2014年   9篇
  2013年   93篇
  2011年   4篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   7篇
  1999年   4篇
  1998年   8篇
  1997年   15篇
  1996年   7篇
  1994年   10篇
  1992年   4篇
  1991年   14篇
  1990年   4篇
  1989年   7篇
  1988年   7篇
  1987年   14篇
  1986年   8篇
  1985年   6篇
  1984年   5篇
  1983年   8篇
  1982年   8篇
  1981年   5篇
  1980年   7篇
  1979年   11篇
  1978年   7篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1974年   7篇
  1973年   12篇
  1972年   6篇
  1971年   6篇
  1970年   7篇
  1969年   6篇
  1968年   5篇
  1967年   5篇
排序方式: 共有490条查询结果,搜索用时 0 毫秒
121.
    
We consider a system that depends on a single vital component. If this component fails, the system life will terminate. If the component is replaced before its failure then the system life may be extended; however, there are only a finite number of spare components. In addition, the lifetimes of these spare components are not necessarily identically distributed. We propose a model for scheduling component replacements so as to maximize the expected system survival. We find the counterintuitive result that when comparing components' general lifetime distributions based on stochastic orderings, not even the strongest ordering provides an a priori guarantee of the optimal sequencing of components. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
122.
    
In this paper, a branch-and-bound procedure is presented for treating the general knapsack problem. The fundamental notion of the procedure involves a variation of traditional branching strategies as well as the incorporation of penalties in order to improve bounds. Substantial computational experience has been obtained, the results of which would indicate the feasibility of the procedure for problems of large size.  相似文献   
123.
    
This paper analyzes the problem faced by a field commander who, confronted by an enemy on N battlefields, must determine an interdiction policy for the enemy's logistics system which minimizes the amount of war material flowing through this system per unit time. The resource utilized to achieve this interdiction is subject to constraint. It can be shown that this problem is equivalent to determining the set of arcs Z* to remove subject to constraint from a directed graph G such that the resulting maximal flow is minimized. A branch and bound algorithm for the solution to this problem is described, and a numerical example is provided.  相似文献   
124.
    
Manning the nation's armed services will continue to be a crucial issue for the remainder of the 1980s. With the projected growth of the services during this decade, the downturn in the 17–21-year-old male population, and the possible upturn in the economy, the ability of the services to meet their respective quality and quantity recruiting goals becomes of central concern. The accurate estimation of the supply for various types of recruits becomes especially important when one views the nearly $1 billion budgeted annually for recruiting and the impact that any military pay raises can have on the DOD's manpower costs of over $40 billion annually. In addition, perceived difficulties in recruiting can impact on weapon systems design decisions, authorized manning levels, and exacerbate the debate concerning the draft; hence, it is clear that few issues today warrant more attention than improving the efficiency and effectiveness of military recruiting. This article provides an introduction and review of some of the key issues involved in modeling and estimating the supply of military recruits. It summarizes and compares the findings of selected econometric models, all of which are based on enlistment experience since the introduction of the All-Volunteer Force in 1973. It also presents some new insights and directions for research dealing with simultaneity, validation, generation of rigorous confidence intervals, and data base selection. It concludes by listing some of the research needs to be addressed in the future.  相似文献   
125.
    
We consider server scheduling on parallel dedicated machines to minimize the makespan. Each job has a loading operation and a processing operation. The loading operation requires a server that serves all the jobs. Each machine has a given set of jobs to process, and the processing sequence is known and fixed. We design a polynomial‐time algorithm to solve the two‐machine case of the problem. When the number of machines is arbitrary, the problem becomes strongly NP‐hard even if all the jobs have the same processing length or all the loading operations require a unit time. We design two heuristic algorithms to treat the case where all the loading times are unit and analyze their performance.  相似文献   
126.
A double-ended queue with a Poisson arrival pattern is examined in a situation where the rates depend (in a restricted sense) on both the time and the state of the system. Under some circumstances, the rates can be controlled. This article studies the distribution of the difference in queue sizes for each member of a large class of control strategies and introduces the problem of determining the optimal times at which the control should be in effect in order to maximize certain objective functions.  相似文献   
127.
128.
    
We study the one-warehouse multi-retailer problem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two-echelon problem into single-facility subproblems, then propose approximation algorithms by judiciously recombining the subproblem solutions. For piecewise linear concave batch order costs with a constant number of slopes we obtain a constant-factor approximation, while for general concave batch costs we propose an approximation within a logarithmic factor of optimality. We also extend some results to subadditive order and/or holding costs.  相似文献   
129.
    
  相似文献   
130.
    
In this paper, we consider just‐in‐time job shop environments (job shop problems with an objective of minimizing the sum of tardiness and inventory costs), subject to uncertainty due to machine failures. We present techniques for proactive uncertainty management that exploit prior knowledge of uncertainty to build competitive release dates, whose execution improves performance. These techniques determine the release dates of different jobs based on measures of shop load, statistical data of machine failures, and repairs with a tradeoff between inventory and tardiness costs. Empirical results show that our methodology is very promising in comparison with simulated annealing and the best of 39 combinations of dispatch rules & release policies, under different frequencies of breakdowns. We observe that the performance of the proactive technique compared to the other two approaches improves in schedule quality (maximizing delivery performance while minimizing costs) with increase in frequency of breakdowns. The proactive technique presented here is also computationally less expensive than the other two approaches. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号