首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   12篇
  490篇
  2021年   11篇
  2019年   20篇
  2018年   10篇
  2017年   10篇
  2016年   11篇
  2015年   11篇
  2014年   9篇
  2013年   93篇
  2011年   4篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   7篇
  1999年   4篇
  1998年   8篇
  1997年   15篇
  1996年   7篇
  1994年   10篇
  1992年   4篇
  1991年   14篇
  1990年   4篇
  1989年   7篇
  1988年   7篇
  1987年   14篇
  1986年   8篇
  1985年   6篇
  1984年   5篇
  1983年   8篇
  1982年   8篇
  1981年   5篇
  1980年   7篇
  1979年   11篇
  1978年   7篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1974年   7篇
  1973年   12篇
  1972年   6篇
  1971年   6篇
  1970年   7篇
  1969年   6篇
  1968年   5篇
  1967年   5篇
排序方式: 共有490条查询结果,搜索用时 7 毫秒
241.
Abstract

We study the differential impacts of combat and humanitarian assistance/disaster relief (HA/DR) missions on the mental health of U.S. Marine Corps members. The deployment experiences of any individual Marine are plausibly random conditional on the observable characteristics which are used to assign Marines into units. Leveraging this exogenous variation, we compare the incidence of post-traumatic stress disorder (PTSD) and suicide deaths among Marines who deployed to either Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) or HA/DR missions between 2001 and 2011. We find that the hazard of PTSD is close to eight times higher among Marines returning from OEF/OIF compared to those never deployed, and just 1.33 times higher among those returning from HA/DR (and never participated in OEF/OIF). Those returning from OEF/OIF missions are 1.81 times more likely than those never deployed to die by suicide when they were still active duty, and the hazard increases to almost 3 after they have left the military. In contrast, we find no difference in the hazards of suicide death between those that deployed to only HA/DR missions and non-deployed Marines.  相似文献   
242.
We present an algorithm for solving a specially structured nonlinear integer resource allocation problem. This problem was motivated by a capacity planning study done at a large Health Maintenance Organization in Texas. Specifically, we focus on a class of nonlinear resource allocation problems that involve the minimization of a convex function over one general convex constraint, a set of block diagonal convex constraints, and bounds on the integer variables. The continuous variable problem is also considered. The continuous problem is solved by taking advantage of the structure of the Karush‐Kuhn‐Tucker (KKT) conditions. This method for solving the continuous problem is then incorporated in a branch and bound algorithm to solve the integer problem. Various reoptimization results, multiplier bounding results, and heuristics are used to improve the efficiency of the algorithms. We show how the algorithms can be extended to obtain a globally optimal solution to the nonconvex version of the problem. We further show that the methods can be applied to problems in production planning and financial optimization. Extensive computational testing of the algorithms is reported for a variety of applications on continuous problems with up to 1,000,000 variables and integer problems with up to 1000 variables. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 770–792, 2003.  相似文献   
243.
This paper is a case study. We show how the powerful methods of time series analysis can be used to investigate the interrelationships between Alert Availability, a logistics performance variable, and Flying Hours, an operational requirement, in the presence of a major change in operating procedures and using contaminated data. The system considered is the fleet of C-141 aircraft of the U.S. Air Force. The major change in operating procedures was brought about by what is known as Reliability Centered Maintenance, and the contaminated data were due to anomalies in reporting procedures. The technique used is a combination of transfer function modeling and intervention analysis.  相似文献   
244.
In this paper we introduce a discrete state level crossing analysis and present some basic results and a key theorem of level crossings. We illustrate the fertility of the discrete state level crossing analysis by applying it to queueing systems with (i) bulk arrival, (ii) instantaneous feedback, (iii) limited waiting space, and (iv) to machine interference problems.  相似文献   
245.
Like airlines and hotels, sports teams and entertainment venues can benefit from revenue management efforts for their ticket sales. Teams and entertainment venues usually offer bundles of tickets early in their selling horizon and put single‐event tickets on sale at a later date; these organizations must determine the best time to offer individual tickets because both types of ticket sales consume the same fixed inventory. We model the optimal a priori timing decision for a seller with a fixed number of identical tickets to switch from selling the tickets as fixed bundles to individual tickets to maximize the revenue realized before the start of the performance season. We assume that bundle and single‐ticket customers each arrive according to independent, nonhomogeneous Markovian death processes with a linear death rate that can vary over time and that the benefit from selling a ticket in a package is higher than from selling the ticket individually. We characterize the circumstances in which it is optimal for the seller to practice mixed bundling and when the seller should only sell bundles or individual tickets, and we establish comparative statics for the optimal timing decision for the special case of constant customer arrival rates. We extend our analytical results to find the optimal time for offering two groups of tickets with high and low demand. Finally, we apply the timing model to a data set obtained from the sports industry. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
246.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   
247.
248.
Using Markov renewal theory, we derive analytic expressions for the expected average cost associated with (s, S) policies for a continuous review inventory model with a compound Poisson demand process and stochastic lead time, under the (restrictive) assumption that only one order can be outstanding.  相似文献   
249.
A dynamic version of the transportation (Hitchcock) problem occurs when there are demands at each of n sinks for T periods which can be fulfilled by shipments from m sources. A requirement in period t2 can be satisfied by a shipment in the same period (a linear shipping cost is incurred) or by a shipment in period t1 < t2 (in addition to the linear shipping cost a linear inventory cost is incurred for every period in which the commodity is stored). A well known method for solving this problem is to transform it into an equivalent single period transportation problem with mT sources and nT sinks. Our approach treats the model as a transshipment problem consisting of T, m source — n sink transportation problems linked together by inventory variables. Storage requirements are proportional to T2 for the single period equivalent transportation algorithm, proportional to T, for our algorithm without decomposition, and independent of T for our algorithm with decomposition. This storage saving feature enables much larger problems to be solved than were previously possible. Futhermore, we can easily incorporate upper bounds on inventories. This is not possible in the single period transportation equivalent.  相似文献   
250.
In this paper we present some results in parametric studies on several transportation-type problems. Specifically, a characterization is obtained for the optimal values of the variables in the problem of determining an optimal growth path in a logistics system. We also derive an upper bound beyond which the optimal growth path remains the same. The results are then extended to the goal programming model and the prespecified market growth rate problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号