首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   9篇
  63篇
  2021年   3篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2011年   1篇
  2009年   4篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
31.
Consider a sequential dynamic pricing model where a seller sells a given stock to a random number of customers. Arriving one at a time, each customer will purchase one item if the product price is lower than her personal reservation price. The seller's objective is to post a potentially different price for each customer in order to maximize the expected total revenue. We formulate the seller's problem as a stochastic dynamic programming model, and develop an algorithm to compute the optimal policy. We then apply the results from this sequential dynamic pricing model to the case where customers arrive according to a continuous‐time point process. In particular, we derive tight bounds for the optimal expected revenue, and develop an asymptotically optimal heuristic policy. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
32.
The article considers a two-person zero-sum game in which the movement of the players is constrained to integer points …, −1, 0, 1, … of a line L. Initially the searcher (hider) is at point x = 0 (x = d, d > 0). The searcher and the hider perform simple motion on L with maximum speeds w and u, respectively, where w > u > 0. Each of the players knows the other's initial position but not the other's subsequent positions. The searcher has a bomb which he can drop at any time during his search. Between the dropping of the bomb and the bomb exploding there is a T time lag. If the bomb explodes at point i and the hider is at point i − 1, or i, or i + 1, then the destruction probability is equal to P, or 1, or P, respectively, where 0 < P < 1. d, w, u, and T are integer constants. The searcher can drop the bomb at integer moments of time t = 0, 1, … . The aim of the searcher is to maximize the probability of the destruction of the hider. © 1993 John Wiley & Sons, Inc.  相似文献   
33.
The paper considers the economic lot scheduling problem (ELSP) where production facility is assumed to deteriorate, owing to aging, with an increasing failure rate. The time to shift from an “in‐control” state to an “out‐of‐control” state is assumed to be normally distributed. The system is scheduled to be inspected at the end of each production lot. If the process is found to be in an “out‐of‐control” state, then corrective maintenance is performed to restore it to an “in‐control” state before the start of the next production run. Otherwise, preventive maintenance is carried out to enhance system reliability. The ELSP is formulated under the capacity constraint taking into account the quality related cost due to possible production of non‐conforming items, process inspection, and maintenance costs. In order to find a feasible production schedule, both the common cycle and time‐varying lot sizes approaches are utilized. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 650–661, 2003  相似文献   
34.
We consider the problem of assigning a set of jobs to different parallel machines of the same processing speed, where each job is compatible to only a subset of those machines. The machines can be linearly ordered such that a higher‐indexed machine can process all those jobs that a lower‐indexed machine can process. The objective is to minimize the makespan of the schedule. This problem is motivated by industrial applications such as cargo handling by cranes with nonidentical weight capacities, computer processor scheduling with memory constraints, and grades of service provision by parallel servers. We develop an efficient algorithm for this problem with a worst‐case performance ratio of + ε, where ε is a positive constant which may be set arbitrarily close to zero. We also present a polynomial time approximation scheme for this problem, which answers an open question in the literature. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
35.
The problem considered involves the assignment of n facilities to n specified locations. Each facility has a given nonnegative flow from each of the other facilities. The objective is to minimize the sum of transportation costs. Assume these n locations are given as points on a two-dimensional plane and transportation costs are proportional to weighted rectangular distances. Then the problem is formulated as a binary mixed integer program. The number of integer variables (all binary) involved equals the number of facilities squared. Without increasing the number of integer variables, the formulation is extended to include “site costs” Computational results of the formulation are presented.  相似文献   
36.
We introduce the notion of comparison of the criticality of two nodes in a coherent system, and devlop a monotonicity property of the reliability function under component pairwise rearrangement. We use this property to find the optimal component arrangement. Worked examples illustrate the methods proposed.  相似文献   
37.
We consider a supplier–customer relationship where the customer faces a typical Newsvendor problem of determining perishable capacity to meet uncertain demand. The customer outsources a critical, demand‐enhancing service to an outside supplier, who receives a fixed share of the revenue from the customer. Given such a linear sharing contract, the customer chooses capacity and the service supplier chooses service effort level before demand is realized. We consider the two cases when these decisions are made simultaneously (simultaneous game) or sequentially (sequential game). For each game, we analyze how the equilibrium solutions vary with the parameters of the problem. We show that in the equilibrium, it is possible that either the customer's capacity increases or the service supplier's effort level decreases when the supplier receives a larger share of the revenue. We also show that given the same sharing contract, the sequential game always induces a higher capacity and more effort. For the case of additive effort effect and uniform demand distribution, we consider the customer's problem of designing the optimal contract with or without a fixed payment in the contract, and obtain sensitivity results on how the optimal contract depends on the problem parameters. For the case of fixed payment, it is optimal to allocate more revenue to the supplier to induce more service effort when the profit margin is higher, the cost of effort is lower, effort is more effective in stimulating demand, the variability of demand is smaller or the supplier makes the first move in the sequential game. For the case of no fixed payment, however, it is optimal to allocate more revenue to the supplier when the variability of demand is larger or its mean is smaller. Numerical examples are analyzed to validate the sensitivity results for the case of normal demand distribution and to provide more managerial insights. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
38.
39.
A classic problem in Search Theory is one in which a searcher allocates resources to the points of the integer interval [1, n] in an attempt to find an object which has been hidden in them using a known probability function. In this paper we consider a modification of this problem in which there is a protector who can also allocate resources to the points; allocating these resources makes it more difficult for the searcher to find an object. We model the situation as a two‐person non‐zero‐sum game so that we can take into account the fact that using resources can be costly. It is shown that this game has a unique Nash equilibrium when the searcher's probability of finding an object located at point i is of the form (1 − exp (−λixi)) exp (−μiyi) when the searcher and protector allocate resources xi and yi respectively to point i. An algorithm to find this Nash equilibrium is given. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47:85–96, 2000  相似文献   
40.
We consider the problem of designing a contract to maximize the supplier's profit in a one‐supplier–one‐buyer relationship for a short‐life‐cycle product. Demand for the finished product is stochastic and price‐sensitive, and only its probability distribution is known when the supply contract is written. When the supplier has complete information on the marginal cost of the buyer, we show that several simple contracts can induce the buyer to choose order quantity that attains the single firm profit maximizing solution, resulting in the maximum possible profit for the supplier. When the marginal cost of the buyer is private information, we show that it is no longer possible to achieve the single firm solution. In this case, the optimal order quantity is always smaller while the optimal sale price of the finished product is higher than the single firm solution. The supplier's profit is lowered while that of the buyer is improved. Moreover, a buyer who has a lower marginal cost will extract more profit from the supplier. Under the optimal contract, the supplier employs a cutoff level policy on the buyer's marginal cost to determine whether the buyer should be induced to sign the contract. We characterize the optimal cutoff level and show how it depends on the parameters of the problem. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 41–64, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号