首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   39篇
  2021年   1篇
  2020年   1篇
  2019年   7篇
  2018年   5篇
  2017年   5篇
  2016年   12篇
  2015年   14篇
  2014年   8篇
  2013年   68篇
  2012年   9篇
  2011年   7篇
  2010年   5篇
  2009年   7篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   11篇
  2004年   8篇
  2003年   13篇
  2002年   12篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有251条查询结果,搜索用时 31 毫秒
131.
We consider in this paper the coordinated replenishment dynamic lot‐sizing problem when quantity discounts are offered. In addition to the coordination required due to the presence of major and minor setup costs, a separate element of coordination made possible by the offer of quantity discounts needs to be considered as well. The mathematical programming formulation for the incremental discount version of the extended problem and a tighter reformulation of the problem based on variable redefinition are provided. These then serve as the basis for the development of a primal‐dual based approach that yields a strong lower bound for our problem. This lower bound is then used in a branch and bound scheme to find an optimal solution to the problem. Computational results for this optimal solution procedure are reported in the paper. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 686–695, 2000  相似文献   
132.
This article studies the inventory competition under yield uncertainty. Two firms with random yield compete for substitutable demand: If one firm suffers a stockout, which can be caused by yield failure, its unsatisfied customers may switch to its competitor. We first study the case in which two competing firms decide order quantities based on the exogenous reliability levels. The results from the traditional inventory competition are generalized to the case with yield uncertainty and we find that quantity and reliability can be complementary instruments in the competition. Furthermore, we allow the firms to endogenously improve their yield reliability before competing in quantity. We show that the reliability game is submodular under some assumptions. The results indicate that the competition in quantity can discourage the reliability improvement. With an extensive numerical study, we also demonstrate the robustness of our analytical results in more general settings. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 107–126, 2015  相似文献   
133.
This paper considers a combined system composed of multiple stand-by remotely piloted vehicles (RPVs) and a single battery against a single passive enemy target, where the target, if not killed, is allowed to change its location after each attack. The RPV has the duty to report on target acquisition, to confirm a target kill, and to pass information on any change in target location after each battery attack. The battery has the duty to attack the target on the basis of the target location information provided to it by the RPV. We develop a closed-form expression for the time-dependent state probabilities of the system, which can be used to compute several important combat measures of effectiveness, including (a) the time-varying mean and variance of the number of the RPVs being alive and of the surviving enemy target, (b) the mission success, mission failure, and combat draw probabilities, and (c) the mean and variance of the combat duration time. Illustrative numerical examples are solved for these combat measures, and sensitivity analyses are performed with respect to target acquisition time and target kill probability. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 645–667, 1998  相似文献   
134.
An important phenomenon often observed in supply chain management, known as the bullwhip effect, implies that demand variability increases as one moves up the supply chain, i.e., as one moves away from customer demand. In this paper we quantify this effect for simple, two‐stage, supply chains consisting of a single retailer and a single manufacturer. We demonstrate that the use of an exponential smoothing forecast by the retailer can cause the bullwhip effect and contrast these results with the increase in variability due to the use of a moving average forecast. We consider two types of demand processes, a correlated demand process and a demand process with a linear trend. We then discuss several important managerial insights that can be drawn from this research. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 269–286, 2000  相似文献   
135.
Most ammunition is produced long before its ultimate consumption and stored in a series of different depots for a considerably long period of time. During storage, the quality of the ammunition stockpile deteriorates proportionally to the condition of the depots. We view different conditions associated with a series of depots as step stress. A random effects logistic regression model is employed to predict the quality of ammunition stockpile in terms of the routing information such as a series of locations and duration of storage of ammunition lots. The resultant prediction model can be used to determine the appropriate time for reorder or renovation of ammunition before the quality becomes substandard. An example is given to illustrate the implementation procedure of the prediction model suggested in this article. © 1994 John Wiley & Sons, Inc.  相似文献   
136.
This paper presents a branch and bound algorithm for computing optimal replacement policies in a discrete‐time, infinite‐horizon, dynamic programming model of a binary coherent system with n statistically independent components, and then specializes the algorithm to consecutive k‐out‐of‐n systems. The objective is to minimize the long‐run expected average undiscounted cost per period. (Costs arise when the system fails and when failed components are replaced.) An earlier paper established the optimality of following a critical component policy (CCP), i.e., a policy specified by a critical component set and the rule: Replace a component if and only if it is failed and in the critical component set. Computing an optimal CCP is a optimization problem with n binary variables and a nonlinear objective function. Our branch and bound algorithm for solving this problem has memory storage requirement O(n) for consecutive k‐out‐of‐n systems. Extensive computational experiments on such systems involving over 350,000 test problems with n ranging from 10 to 150 find this algorithm to be effective when n ≤ 40 or k is near n. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 288–302, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10017  相似文献   
137.
In the apparel industry, vendors often suffer from high mismatches in supply and demand. To cope with this problem, they procure the same style product from different suppliers with different manufacturing costs. Especially in the quick response environment, which allows vendors to monitor trends in customer demand and search for available suppliers through the electronic market, they have additional opportunities to improve their decision‐making. In this paper, we propose an analytical profit maximization model and develop efficient decision tools to help both the middle and lower level managers pursuing this strategy. Furthermore, we have shown how significantly the vendors' potential competitive edge can be improved by exploiting multiple supply options, even at the expense of high premium procurement costs for late orders. The effect is critical, especially in a highly competitive market, and it has important implications for the top managers. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
138.
In this paper we consider an inventory model in which the retailer does not know the exact distribution of demand and thus must use some observed demand data to forecast demand. We present an extension of the basic newsvendor model that allows us to quantify the value of the observed demand data and the impact of suboptimal forecasting on the expected costs at the retailer. We demonstrate the approach through an example in which the retailer employs a commonly used forecasting technique, exponential smoothing. The model is also used to quantify the value of information and information sharing for a decoupled supply chain in which both the retailer and the manufacturer must forecast demand. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 388–411, 2003  相似文献   
139.
We consider a simple two‐stage supply chain with a single retailer facing i.i.d. demand and a single manufacturer with finite production capacity. We analyze the value of information sharing between the retailer and the manufacturer over a finite time horizon. In our model, the manufacturer receives demand information from the retailer even during time periods in which the retailer does not order. To analyze the impact of information sharing, we consider the following three strategies: (1) the retailer does not share demand information with the manufacturer; (2) the retailer does share demand information with the manufacturer and the manufacturer uses the optimal policy to schedule production; (3) the retailer shares demand information with the manufacturer and the manufacturer uses a greedy policy to schedule production. These strategies allow us to study the impact of information sharing on the manufacturer as a function of the production capacity, and the frequency and timing in which demand information is shared. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
140.
We study the problem of designing a two‐echelon spare parts inventory system consisting of a central plant and a number of service centers each serving a set of customers with stochastic demand. Processing and storage capacities at both levels of facilities are limited. The manufacturing process is modeled as a queuing system at the plant. The goal is to optimize the base‐stock levels at both echelons, the location of service centers, and the allocation of customers to centers simultaneously, subject to service constraints. A mixed integer nonlinear programming model (MINLP) is formulated to minimize the total expected cost of the system. The problem is NP‐hard and a Lagrangian heuristic is proposed. We present computational results and discuss the trade‐off between cost and service. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号