首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   39篇
  251篇
  2021年   1篇
  2020年   1篇
  2019年   7篇
  2018年   5篇
  2017年   5篇
  2016年   12篇
  2015年   14篇
  2014年   8篇
  2013年   68篇
  2012年   9篇
  2011年   7篇
  2010年   5篇
  2009年   7篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   11篇
  2004年   8篇
  2003年   13篇
  2002年   12篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
151.
152.
Most papers in the scheduling field assume that a job can be processed by only one machine at a time. Namely, they use a one‐job‐on‐one‐machine model. In many industry settings, this may not be an adequate model. Motivated by human resource planning, diagnosable microprocessor systems, berth allocation, and manufacturing systems that may require several resources simultaneously to process a job, we study the problem with a one‐job‐on‐multiple‐machine model. In our model, there are several alternatives that can be used to process a job. In each alternative, several machines need to process simultaneously the job assigned. Our purpose is to select an alternative for each job and then to schedule jobs to minimize the completion time of all jobs. In this paper, we provide a pseudopolynomial algorithm to solve optimally the two‐machine problem, and a combination of a fully polynomial scheme and a heuristic to solve the three‐machine problem. We then extend the results to a general m‐machine problem. Our algorithms also provide an effective lower bounding scheme which lays the foundation for solving optimally the general m‐machine problem. Furthermore, our algorithms can also be applied to solve a special case of the three‐machine problem in pseudopolynomial time. Both pseudopolynomial algorithms (for two‐machine and three‐machine problems) are much more efficient than those in the literature. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 57–74, 1999  相似文献   
153.
This paper presents a branch and bound algorithm for computing optimal replacement policies in a discrete‐time, infinite‐horizon, dynamic programming model of a binary coherent system with n statistically independent components, and then specializes the algorithm to consecutive k‐out‐of‐n systems. The objective is to minimize the long‐run expected average undiscounted cost per period. (Costs arise when the system fails and when failed components are replaced.) An earlier paper established the optimality of following a critical component policy (CCP), i.e., a policy specified by a critical component set and the rule: Replace a component if and only if it is failed and in the critical component set. Computing an optimal CCP is a optimization problem with n binary variables and a nonlinear objective function. Our branch and bound algorithm for solving this problem has memory storage requirement O(n) for consecutive k‐out‐of‐n systems. Extensive computational experiments on such systems involving over 350,000 test problems with n ranging from 10 to 150 find this algorithm to be effective when n ≤ 40 or k is near n. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 288–302, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10017  相似文献   
154.
Traditionally, policy and planning have been institutionally weak in the Naval Staff (Office of the Chief of Naval Operations – OPNAV). In their place, the N8 (Programming) has dominated resource decision-making, and, by default, decisions relating to policy and planning. Recent uncertainty over defense authorization and appropriations has resulted in calls for a greater role to be played by the N3/5, Policy and Plans Directorate. The article argues that reform of the Department of the Navy’s planning process is urgently needed. OPNAV’s weak planning and overly dominant programming practices are compared with those of the Departments of the Army and Air Force and are shown to be out of conformance with them. The article concludes with specific and detailed recommendations for reform of both the current planning and programming processes.  相似文献   
155.
This paper presents a deterministic approach to schedule patients in an ambulatory surgical center (ASC) such that the number of postanesthesia care unit nurses at the center is minimized. We formulate the patient scheduling problem as new variants of the no‐wait, two‐stage process shop scheduling problem and present computational complexity results for the new scheduling models. Also, we develop a tabu search‐based heuristic algorithm to solve the patient scheduling problem. Our algorithm is shown to be very effective in finding near optimal schedules on a set of real data from a university hospital's ASC. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
156.
This article is concerned with a general multi‐class multi‐server priority queueing system with customer priority upgrades. The queueing system has various applications in inventory control, call centers operations, and health care management. Through a novel design of Lyapunov functions, and using matrix‐analytic methods, sufficient conditions for the queueing system to be stable or instable are obtained. Bounds on the queue length process are obtained by a sample path method, with the help of an auxiliary queueing system. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
157.
Despite its ability to result in more effective network plans, the telecommunication network planning problem with signal‐to‐interference ratio constraints gained less attention than the power‐based one because of its complexity. In this article, we provide an exact solution method for this class of problems that combines combinatorial Benders decomposition, classical Benders decomposition, and valid cuts in a nested way. Combinatorial Benders decomposition is first applied, leading to a binary master problem and a mixed integer subproblem. The subproblem is then decomposed using classical Benders decomposition. The algorithm is enhanced using valid cuts that are generated at the classical Benders subproblem and are added to the combinatorial Benders master problem. The valid cuts proved efficient in reducing the number of times the combinatorial Benders master problem is solved and in reducing the overall computational time. More than 120 instances of the W‐CDMA network planning problem ranging from 20 demand points and 10 base stations to 140 demand points and 30 base stations are solved to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
158.
Global sourcing has made quality management a more challenging task, and supplier certification has emerged as a solution to overcome suppliers' informational advantage about their product quality. This article analyzes the impact of certification standards on the supplier's investment in quality, when a buyer outsources the production process. Based on our results, deterministic certification may lead to under‐investment in quality improvement technology for efficient suppliers, thereby leading to potential supply chain inefficiency. The introduction of noisy certification may alleviate this under‐investment problem, when the cost of information asymmetry is high. While allowing noisy certification always empowers the buyer to offer a menu to screen among heterogeneous suppliers, the buyer may optimally choose only a limited number of certification standards. Our analysis provides a clear‐cut prediction of the types of certifiers the buyer should use for heterogeneous suppliers, and we identify the conditions under which the supplier benefits from noisy certification. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
159.
We consider the problem of optimally maintaining a stochastically degrading, single‐unit system using heterogeneous spares of varying quality. The system's failures are unannounced; therefore, it is inspected periodically to determine its status (functioning or failed). The system continues in operation until it is either preventively or correctively maintained. The available maintenance options include perfect repair, which restores the system to an as‐good‐as‐new condition, and replacement with a randomly selected unit from the supply of heterogeneous spares. The objective is to minimize the total expected discounted maintenance costs over an infinite time horizon. We formulate the problem using a mixed observability Markov decision process (MOMDP) model in which the system's age is observable but its quality must be inferred. We show, under suitable conditions, the monotonicity of the optimal value function in the belief about the system quality and establish conditions under which finite preventive maintenance thresholds exist. A detailed computational study reveals that the optimal policy encourages exploration when the system's quality is uncertain; the policy is more exploitive when the quality is highly certain. The study also demonstrates that substantial cost savings are achieved by utilizing our MOMDP‐based method as compared to more naïve methods of accounting for heterogeneous spares.  相似文献   
160.
Transfer pricing refers to the pricing of an intermediate product or service within a firm. This product or service is transferred between two divisions of the firm. Thus, transfer pricing is closely related to the allocation of profits in a supply chain. Motivated by the significant impact of transfer pricing methods for tax purposes on operational decisions and the corresponding profits of a supply chain, in this article, we study a decentralized supply chain of a multinational firm consisting of two divisions: a manufacturing division and a retail division. These two divisions are located in different countries under demand uncertainty. The retail division orders an intermediate product from the upstream manufacturing division and sets the retail price under random customer demand. The manufacturing division accepts or rejects the retail division's order. We specifically consider two commonly used transfer pricing methods for tax purposes: the cost‐plus method and the resale‐price method. We compare the supply chain profits under these two methods. Based on the newsvendor framework, our analysis shows that the cost‐plus method tends to allocate a higher percentage of profit to the retail division, whereas the resale‐price method tends to achieve a higher firm‐wide profit. However, as the variability of demand increases, our numerical study suggests that the firm‐wide and divisional profits tend to be higher under the cost‐plus method than they are under the resale‐price method. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号