首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
A major challenge in making supply meet demand is to coordinate transshipments across the supply chain to reduce costs and increase service levels in the face of demand fluctuations, short lead times, warehouse limitations, and transportation and inventory costs. In particular, transshipment through crossdocks, where just‐in‐time objectives prevail, requires precise scheduling between suppliers, crossdocks, and customers. In this work, we study the transshipment problem with supplier and customer time windows where flow is constrained by transportation schedules and warehouse capacities. Transportation is provided by fixed or flexible schedules and lot‐sizing is dealt with through multiple shipments. We develop polynomial‐time algorithms or, otherwise, provide the complexity of the problems studied. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
12.
This paper considers a three‐person rendezvous problem on the line which was introduced earlier by the authors. Three agents are placed at three consecutive integer value points on the real line, say 1, 2, and 3. Each agent is randomly faced towards the right or left. Agents are blind and have a maximum speed of 1. Their common aim is to gather at a common location as quickly as possible. The main result is the proof that a strategy given by V. Baston is the unique minimax strategy. Baston's strategy ensures a three way rendezvous in time at most 3.5 for any of the 3!23 = 48 possible initial configurations corresponding to positions and directions of each agent. A connection is established between the above rendezvous problem and a search problem of L. Thomas in which two parents search separately to find their lost child and then meet again. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 244–255, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10005  相似文献   
13.
A natural extension of the bucket brigade model of manufacturing is capable of chaotic behavior in which the product intercompletion times are, in effect, random, even though the model is completely deterministic. This is, we believe, the first proven instance of chaos in discrete manufacturing. Chaotic behavior represents a new challenge to the traditional tools of engineering management to reduce variability in production lines. Fortunately, if configured correctly, a bucket brigade assembly line can avoid such pathologies. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号