首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1405篇
  免费   372篇
  国内免费   33篇
  2024年   1篇
  2023年   3篇
  2022年   12篇
  2021年   57篇
  2020年   7篇
  2019年   5篇
  2018年   4篇
  2017年   12篇
  2016年   7篇
  2015年   47篇
  2014年   57篇
  2013年   66篇
  2012年   37篇
  2011年   39篇
  2010年   82篇
  2009年   96篇
  2008年   83篇
  2007年   120篇
  2006年   35篇
  2005年   58篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   23篇
  2000年   53篇
  1999年   150篇
  1998年   117篇
  1997年   104篇
  1996年   93篇
  1995年   77篇
  1994年   66篇
  1993年   54篇
  1992年   58篇
  1991年   41篇
  1990年   38篇
  1989年   28篇
  1988年   13篇
  1987年   14篇
  1986年   14篇
  1985年   10篇
  1983年   6篇
  1982年   6篇
排序方式: 共有1810条查询结果,搜索用时 15 毫秒
911.
We examine the behavior of a manufacturer and a retailer in a decentralized supply chain under price‐dependent, stochastic demand. We model a retail fixed markup (RFM) policy, which can arise as a form of vertically restrictive pricing in a supply chain, and we examine its effect on supply chain performance. We prove the existence of the optimal pricing and replenishment policies when demand has a linear additive form and the distribution of the uncertainty component has a nondecreasing failure rate. We numerically compare the relative performance of RFM to a price‐only contract and we find that RFM results in greater profit for the supply chain than the price‐only contract in a variety of scenarios. We find that RFM can lead to Pareto‐improving solutions where both the supplier and the retailer earn more profit than under a price‐only contract. Finally, we compare RFM to a buyback contract and explore the implications of allowing the fixed markup parameter to be endogenous to the model. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   
912.
In this paper, we study the problem of scheduling quay cranes (QCs) at container terminals where incoming vessels have different ready times. The objective is to minimize the maximum relative tardiness of vessel departures. The problem can be formulated as a mixed integer linear programming (MILP) model of large size that is difficult to solve directly. We propose a heuristic decomposition approach to breakdown the problem into two smaller, linked models, the vessel‐level and the berth‐level models. With the same berth‐level model, two heuristic methods are developed using different vessel‐level models. Computational experiments show that the proposed approach is effective and efficient. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
913.
直接采用粒子模拟方法较难实现带电粒子束团千米量级的长程传输模拟,针对此问题以静电模型为基础,引入移动窗技术,使百米量级的粒子传输窗口与束团同步推进运动,建立了带电粒子束团的长程传输模型。将模拟得到的带电粒子束团径向膨胀特性同包络方程的计算结果进行对比,两者吻合较好,证明了在带电粒子束团长程传输模拟研究中结合移动窗技术的可行性及所建模型的合理性。利用此模型分析了100 MeV相对论电子束团的长程传输过程,发现传输过程中束团的自生电场和磁场在径向上呈高度对称分布,轴向上则呈轻微前冲分布;同时,束团内部粒子的轴向速度分布也会发生变化。利用此模型分析了100 MeV电子束团的长程传输过程及其内部参数和自生场量的变化。  相似文献   
914.
This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire (LDMF) using a mixed formulation of the transfer matrix method for multibody systems (MSTMM) and Newton-Euler formulation. Taking a ground-borne multiple launch rocket systems (MLRS), the focus is on the launching subsystem comprising the rocket, flexible tube, and tube tail. The launching subsystem is treated as a coupled rigid-flexible multibody system, where the rocket and tube tail are treated as rigid bodies while the flexible tube as a beam with large motion. Firstly, the tube and tube tail can be elegantly handled by the MSTMM, a computationally efficient order-N formulation. Then, the equation of motion of the in-bore rocket with relative kinematics w.r.t. the tube using the Newton-Euler method is derived. Finally, the rocket, tube, and tube tail dynamics are coupled, yielding the equation of motion of the launching subsystem that can be regarded as a building block and further integrated with other subsystems. The deduced dynamics equation of the launching subsystem is not limited to ground-borne MLRS but also fits for tanks, self-propelled artilleries, and other air-borne and naval-borne weapons undergoing large motion. Numerical simulation results of LDMF are given and partially verified by the experiment.  相似文献   
915.
Fluoropolymers get increasing attention in energetic materials application due to the high fluorine content. To explore the effect of poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) on Al/MnO2 nanothermite, the samples with different contents are prepared and characterized by SEM, TG-DSC, XRD, and their ignition and combustion behavior are tested and recorded. The results show that P(VDF-HFP) as an energetic binder can combine the nanothermite components together, even exist in the gaps. The integrity of energetic materials has been improved. Thermal analysis shows that the addition of P(VDF-HFP) greatly changes the thermal reaction processes, and the exothermic peaks appear early, but the utilization of fuel and oxidizer is not efficient from the XRD results. Furthermore, the appropriate addition of P(VDF-HFP) can directly reduce the ignition energy threshold and increase the combustion time, which is necessary for the potential ignition charge application. The possible reasons for above phenomena are discussed and analyzed. This research provides a reference for improvement of thermite-based ignition charge formulation.  相似文献   
916.
Xin-yun Liu  Da-lin Wu  Jian Hou 《防务技术》2021,17(4):1374-1386
The test shell without projectile belt is widely used in the teaching, inspection and maintenance of modern automatic naval guns. In order to ensure the normal work of each mechanism, it is very important to design the buffer and limit of the test shell during the process of entering the bore. Taking a certain type of medium caliber naval gun as the research object, the design of colloidal fluid damper and cartridge lock was proposed to ensure the reliability of entering the bore and closing the breechblock. By combining the simulation methods of computational fluid dynamics (CFD) and multibody system dy-namic (MBD), it was analyzed whether the structural design can meet the engineering requirements. The research results show that the colloidal fluid damper can dissipate a large amount of kinetic energy of the shell, and the cartridge lock can limit the rebound movement. The combination of the two ensures the smooth process of closing the breechblock. The research provides a design method for the process of the test shell entering the bore, and provides theoretical support for the feasibility of the method.  相似文献   
917.
The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base (CMDB) propellant. Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process. To improve the accuracy of the simulation results, material parameters and model structure were corrected based on actual conditions, and adaptive grid technology was applied in the local mesh refinement. In addition, the rheological behavior, motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps, rotational rates and temperatures of two rollers. The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet. Compared with the gap, the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging. Meanwhile, under the synergistic effect of contact heat transfer as well as convective heat exchange, heat accumulated near the outlet and diffused along the reflux movement, which led to the countercurrent heat dissipation behavior of CMDB propellant slurry. The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored, which provided theoretical guidance and reference data for the optimization of calendering process conditions. Based on the simulation results, the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.  相似文献   
918.
The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene (CL-20/TNT) composite was prepared by spray-drying method in which sensitive high energy explosive (CL-20) was coated with insensitive explosive (TNT). The structure and properties of different formulations of CL-20/TNT composite and CL-20/TNT mixture were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Laser particle size analyzer, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impact sensitivity test and detonation performance. The results of SEM, TEM, XPS and XRD show that ϵ-CL-20 particles are coated by TNT. When the ratio of CL-20/TNT is 75/25, core-shell structure is well formed, and thickness of the shell is about 20–30 nm. And the analysis of heat and impact show that with the increase of TNT content, the TNT coating on the core-shell composite material can not only catalyze the thermal decomposition of core material (CL-20), but also greatly reduce the impact sensitivity. Compared with the CL-20/TNT mixture (75/25) at the same ratio, the characteristic drop height of core-shell CL-20/TNT composite (75/25) increased by 47.6% and the TNT coating can accelerate the nuclear decomposition in the CL-20/TNT composites. Therefore, the preparation of the core-shell composites can be regarded as a unique means, by which the composites are characterized by controllable decomposition rate, high energy and excellent mechanical sensitivity and could be applied to propellants and other fields.  相似文献   
919.
This paper mainly studied the problem of energy conserving in wireless sensor networks for target tracking in defensing combats. Firstly, the structures of wireless sensor nodes and networks were illustrated; Secondly, the analysis of existing energy consuming in the sensing layer and its calculation method were provided to build the energy conserving objective function; What's more, the other two indicators in target tracking, including target detection probability and tracking accuracy, were combined to be regarded as the constraints of the energy conserving objective function. Fourthly, the three energy conserving approaches, containing optimizing the management scheme, prolonging the time interval between two adjacent observations, and transmitting the observations selectively, were introduced; In addition, the improved lion algorithm combined with the Logistic chaos sequence was proposed to obtain sensor management schemes. Finally, simulations had been made to prove the effectiveness of the proposed methods and algorithm.  相似文献   
920.
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive esti-mation algorithm is insensitive to initial conditions and of good robustness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号