首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   22篇
  67篇
  2023年   3篇
  2021年   2篇
  2020年   4篇
  2019年   6篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
排序方式: 共有67条查询结果,搜索用时 0 毫秒
1.
舰船电缆热老化寿命的研究   总被引:4,自引:0,他引:4  
介绍了某船用电缆热老化寿命研究的有关试验和结果分析.对电统绝缘材料失效的判断、机械性能变化的预测,以及如何根据电缆的负载情况和周围的环境温度确定绝缘材料的老化温度等,提出了相应的观点和方法.  相似文献   
2.
《防务技术》2020,16(2):439-446
In order to study the cross-linking density and aging constitutive relationship of HTPB coating during storage, the thermal accelerated aging tests at 0%, 3%, 6% and 9% prestrains were carried out. The cross-linking density of HTPB coating at different aging stages were tested using low-field 1H NMR and the variation of cross-linking density was analyzed. The aging model of cross-linking density considering the chemical aging and the physical stretching factors was established. The uniaxial tensile tests were carried out on HTPB coating at different aging stages and the cross-linking density was introduced into Ogden hyperelastic constitutive model as a characterization parameter of correction coefficient. Combined with uniaxial tensile test results, a prestrain aging constitutive model of HTPB coating was established. The results show that the cross-linking density of HTPB coating increases rapidly at first and then slowly with the increase of thermal accelerated aging time without prestrain. Under prestrain conditions, the cross-linking density of HTPB coating decreases at the early stage, and increases rapidly at first and then slowly at the middle and late stages of thermal accelerated aging. The correlation coefficients of aging model of cross-linking density and aging constitutive model with test results are R > 0.9500 and R > 0.9900 respectively, which can be used to accurately describe the cross-linking density and aging constitutive relationship of HTPB coating under prestrain accelerated thermal aging conditions.  相似文献   
3.
In this article, we discuss the optimal allocation problem in a multiple stress levels life‐testing experiment when an extreme value regression model is used for statistical analysis. We derive the maximum likelihood estimators, the Fisher information, and the asymptotic variance–covariance matrix of the maximum likelihood estimators. Three optimality criteria are defined and the optimal allocation of units for two‐ and k‐stress level situations are determined. We demonstrate the efficiency of the optimal allocation of units in a multiple stress levels life‐testing experiment by using real experimental situations discussed earlier by McCool and Nelson and Meeker. Monte Carlo simulations are used to show that the optimality results hold for small sample sizes as well. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
4.
加速寿命试验的相关性研究   总被引:1,自引:0,他引:1  
阐述了加速贮存寿命试验与自然贮存试验相关性的概念。讨论了几种常用的相关性评价方法,并用实例进行了相关性计算与分析。  相似文献   
5.
加速寿命试验是高可靠长寿命型产品的量化评估的重要途径,广泛应用于武器装备的定寿延寿课题中。为了进一步提高加速寿命试验的效率,提出一种新的试验方法——序降应力加速寿命试验。通过理论模型建立、试验数据分析和蒙特卡罗仿真对该方法的有效性进行分析。研究结果表明,在相同的试验环境下序降应力加速寿命试验方法不但能大幅度提高试验效率,同时还能提高试验分析精度。因此,在武器装备的定寿延寿课题中,序降应力加速寿命试验值得推广。  相似文献   
6.
某型引信压电陶瓷加速老化试验   总被引:2,自引:0,他引:2  
压电陶瓷作为压电引信的关键元件,其贮存可靠性至关重要。为研究贮存对压电陶瓷性能变化的影响,进行了历时176天的某型引信用压电陶瓷加速老化试验。根据试验结果研究了陶瓷的压电参数随试验条件和老化时间变化的规律,探索了压电陶瓷的贮存可靠性和可靠贮存寿命。  相似文献   
7.
Burn‐in procedure is a manufacturing technique that is intended to eliminate early failures of system or product. Burning‐in a component or system means to subject it to a period of use prior to being used in field. Generally, burn‐in is considered expensive and so the length of burn‐in is typically limited. Thus, burn‐in is most often accomplished in an accelerated environment in order to shorten the burn‐in process. A new failure rate model for an accelerated burn‐in procedure, which incorporates the accelerated ageing process induced by the accelerated environmental stress, is proposed. Under a more general assumption on the shape of failure rate function of products, which includes the traditional bathtub‐shaped failure rate function as a special case, upper bounds for optimal burn‐in time will be derived. A numerical example will also be given for illustration. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
8.
通过对玻璃钢阻燃技术的介绍,以及老化对玻璃钢性能的影响,提出阻燃玻璃钢材质在自然环境中同样存在因老化而出现阻燃性降低的问题。  相似文献   
9.
By running life tests at higher stress levels than normal operating conditions, accelerated life testing (ALT) quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant‐stress testing, a unit is tested at a fixed stress level until failure or the termination time point of test, whereas step‐stress testing allows the experimenter to gradually increase the stress levels at some prefixed time points during the test. In this work, the optimal k‐level constant‐stress and step‐stress ALTs are compared for the exponential failure data under complete sampling and Type‐I censoring. The objective is to quantify the advantage of using the step‐stress testing relative to the constant‐stress one. Assuming a log‐linear life–stress relationship with the cumulative exposure model for the effect of changing stress in step‐stress testing, the optimal design points are determined under C/D/A‐optimality criteria. The efficiency of step‐stress testing to constant‐stress one is then discussed in terms of the ratio of optimal objective functions based on the information matrix. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2013  相似文献   
10.
对数正态分布加速因子的Bayes估计   总被引:1,自引:0,他引:1       下载免费PDF全文
基于对数正态分布形式以及分布对数标准差不变的条件,运用Bayes方法对对数正态分布加速寿命试验条件下的加速因子进行分析。首先基于全寿命试验数据和随机变量函数分布的理论推导出加速因子的先验分布;然后由Bayes公式结合少量的现场截尾试验数据,得出加速因子的Bayes估计模型;最后给出实例进行说明。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号