首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2554篇
  免费   468篇
  国内免费   220篇
  2024年   25篇
  2023年   66篇
  2022年   63篇
  2021年   111篇
  2020年   123篇
  2019年   76篇
  2018年   18篇
  2017年   89篇
  2016年   109篇
  2015年   96篇
  2014年   141篇
  2013年   145篇
  2012年   199篇
  2011年   189篇
  2010年   202篇
  2009年   173篇
  2008年   217篇
  2007年   163篇
  2006年   130篇
  2005年   124篇
  2004年   96篇
  2003年   80篇
  2002年   73篇
  2001年   96篇
  2000年   58篇
  1999年   54篇
  1998年   54篇
  1997年   49篇
  1996年   47篇
  1995年   31篇
  1994年   28篇
  1993年   26篇
  1992年   27篇
  1991年   26篇
  1990年   13篇
  1989年   22篇
  1988年   2篇
  1987年   1篇
排序方式: 共有3242条查询结果,搜索用时 31 毫秒
171.
为了满足超高速聚能射流的测速要求,采用狭缝光阑与高速光电探测器构成被动探测模块,探测射流的自身火光辐射。测速系统以多级光阑前后排列的方式限制探测幕面的视场与厚度。分别对两级、三级光阑2种滤光模式建立了光学模型,模拟射流过靶时各级光阑的滤光性能。仿真结果表明,三级光阑可以有效衰减射流自身的强辐射,并且可以滤除探测幕范围之外的爆炸火光以及设备内的反射光,滤光效果超过99.25%。采用三级光阑逐级滤光的方法,解决了射流辐射亮度强并且伴随有杂散光导致其速度不易测试的难题。最后在外场进行射流测速试验,得到的信号波形印证了仿真结果的正确性。对过靶信号进行相关性分析处理得到射流的精确过靶时间,计算得到的射流速度为6 500 m/s左右。将测得数据结果与高速摄影测速结果进行对比验证,测速系统的不确定度低于1.9%,验证了系统的可行性。  相似文献   
172.
城市低空运用小型无人机检测车辆等城市目标正逐渐成为主流手段。针对目前存在的实际场景中可见光探测易受光照影响、无法夜间工作和红外探测目标边缘模糊,导致单模检测网络检测精度低的问题,提出了一种基于图像融合和深度学习网络的无人机多模态融合的城市目标检测算法:首先,基于DUT-VTUAV可见光-红外配准数据集和TIF图像融合算法,构建多模态融合数据集;其次,对比了现有YOLO(You Only Look Once)检测系列网络的检测精度、速度及参数量等性能参数,选择出最适合无人机端移动部署的轻量化网络YOLO v5n;最后,综合运用图像融合算法和目标检测模型,形成多模态融合检测算法。在车辆数据集上进行的对比实验表明:相对单模检测,所提出的算法的检测精度得到有效提升,mAP高达99.6%,且该算法可在0.3 s内完成一组可见光-红外图像的融合检测,具有较高的实时性。  相似文献   
173.
YOLOv5模型对普通场景图像的目标检测有更好的性能,但在高空航拍图像检测中表现不佳,针对这个问题,提出一种改进的YOLOv5模型。首先,建立高空航拍目标数据集,弥补该类图像不足的问题,对模型进行针对性训练,其次,采用多尺度细节增强提升处理数据图像,整体提升数据质量;最后,利用多尺度特征融合更好的平衡目标特征和位置信息,增加大尺度检测头提升小目标检测能力。经过实验分析,证明该方法在对高空航拍图像目标进行检测时平均精度、准确率和召回率分别比YOLOv5模型提高了12.6%、10.3%和6%,满足检测要求。  相似文献   
174.
为了实现RLPG的液体发射药自动加注,设计了其电液定量伺服加注系统。通过控制阀控定量缸中活塞位移实时调整无杆腔中发射药量,实际应用过程中,定量过程与复位过程、火炮发射过程无冲,可并行工作。针对电液伺服系统模型不确定性、非线性的特点,建立了其状态空间模型。为了改善滑模变结构控制的抖振现象,设计了该系统的模糊滑模变结构控制器。搭建了AMESim/Simulink联合仿真平台,在不同装药量下对系统进行仿真分析,结果表明,定量过程所需时间比RLPG发射时间与变装药活塞复位时间之和小得多,加注0.628 3 L液体发射药共需0.95 s;随着装药量增加,系统定量精度有所下降,但均保持在99.85%以上。  相似文献   
175.
针对弱监督目标检测中只能检测出图像中最具有辨别性部分和训练过程极易陷入局部最优问题,提出了一种特征增强和损失优化的弱监督目标检测算法。该算法设计了一种高效可选择通道注意力模块,该模块通过关联通道的选择来提高其局部信息的交互能力,以此来扩大最具辨别性的示例目标区域;此外,通过对网络回归损失函数施加针对性的动态权重,使其能够自动弱化回归分支中伪标注边界框不准确性的影响,提高目标定位的精度。在PASCAL VOC 2007及PASCAL VOC 2012数据集上的实验表明,相比其他同类算法,该算法能够有效地提高弱监督目标检测的精度。同时,由于该算法引入的额外训练参数和计算负担几乎可以忽略不计,因此还具有良好的高效性。  相似文献   
176.
针对微光环境下目标检测精度较低的问题,提出了一种基于改进YOLOv7的微光与红外融合图像的多目标检测方法。结合可见光、红外图像的优点,利用生成对抗网络法制作融合图像数据集。在YOLOv7模型中引入BoT结构,使网络更加关注整体图像信息,提升特征提取能力,从而提高行人和汽车检测的准确率,并将回归损失函数由CIoU改进为SIoU,降低自由度,加速网络收敛,得到了YOLOv7的改进算法—BoT-YOLOv7。在公开数据集LLVIP和MSRS上进行了实验。结果表明:相比可见光或红外图像,BoT-YOLOv7对融合图像的检测精度较高;改进算法对融合图像取得了92.6%的平均精度均值,较原始YOLOv7模型提高了5.83%;BoT-YOLOv7算法在检测行人和汽车等目标时漏检和误检率较低,具有较好的准确性和实时性,可以满足微光环境下多目标探测的要求。  相似文献   
177.
为了研究一种防弹玻璃的抗侵彻机理,基于12.7、14.5 mm穿燃弹开展一种防弹玻璃的抗侵彻试验。通过分析侵彻后靶板的破环形貌,揭示了该型防弹玻璃对穿燃弹的抗侵彻机理。采用ANSYS/LS-DYNA软件对2种口径穿燃弹侵彻该防弹玻璃的过程进行数值模拟,对比分析装甲倾角对2种口径穿燃弹极限穿透速度的影响,以及穿燃弹初速度对剩余速度的影响,获得了该防弹玻璃的抗侵彻机理,并计算得到装甲防护系数。结果表明:弹丸初速度与极限穿透速度相同时,此时的弹道偏离角最大,随着弹丸初速度的增大,弹道偏离角减小;防弹玻璃PC背板的出孔裂缝长度与弹丸初速度成正比增长关系;弹丸初速度相同时,剩余速度随着穿燃弹口径的减小而减小,且随着初速度的增大,差值逐渐减小;通过工程算法得到该型防弹玻璃对12.7 mm穿燃弹的防护系数为0.74。  相似文献   
178.
针对智能船舶的自主航行障碍物视觉快速检测与测距需求,提出一种基于深度学习的智能船舶轻量化水面障碍物视觉检测与测距方法。从障碍物检测速度和计算量的角度出发,该方法可提升智能船舶环境感知能力。首先,针对障碍物检测问题,在Yolov4检测模型的框架下,构建基于MobileNet特征提取网络的DIS-Yolo水面障碍物检测模型,实现模型网络结构的轻量化改进。其次,针对障碍物测距问题,基于所构建的障碍物检测模型和COMS成像模型,提出水面障碍物测距机制,实现水面障碍物的高精度测距。最后,通过模拟实验验证所改进模型的有效性与测距函数的精确度。所提出的方法可提升智能船舶的航行安全性,同时可为智能船舶环境感知需求提供新的思路。  相似文献   
179.
针对水面无人艇目标检测类别多、尺寸小、形变大等难题,提出了基于多分支注意力改进的YOLOv5检测算法。首先提出了一种SAv2Attention模块,通过对通道的“复制-转换-合并”等处理,实现卷积层通道间与通道内特征融合,提升网络的局部感受野,然后将其嵌入到YOLOv5网络,最后在构建的真实海试数据集上进行了大量对比实验。结果表明,SAv2Attention可有效提升YOLOv5的检测精度,典型海面目标数据集上,mAP@0.5检测精度达到94.6%,mAP@0.5:0.95检测精度达到60.9%,相较于原生算法分别提高1.4%和3%,对小尺寸目标平均检测率APS提升4.3%,证明所提方法能有效提升无人艇对水面小目标的检测能力。  相似文献   
180.
针对纯方位目标转向机动检测问题,提出一种基于航向估计的多平台纯方位目标机动检测算法。该算法通过选定假设机动点序列,解算假设机动点前后的两段目标运动要素,根据解算出的相邻段航向差序列变化来判别目标是否发生机动。基于Taylor级数要素解算模型,建立了两段运动要素联合解算模型和两段运动要素独立解算模型。通过对多种航路进行仿真计算,统计分析这两种解算模型下机动检测算法的虚警率、目标机动检测率、机动检测延迟时间以及机动时刻估计精度。仿真结果表明,两种解算模型下的机动检测算法能够有效地对转向机动目标进行机动检测。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号