首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   67篇
  2021年   2篇
  2020年   1篇
  2019年   11篇
  2018年   4篇
  2017年   15篇
  2016年   20篇
  2015年   15篇
  2014年   15篇
  2013年   68篇
  2012年   15篇
  2011年   20篇
  2010年   21篇
  2009年   18篇
  2008年   21篇
  2007年   31篇
  2006年   20篇
  2005年   14篇
  2004年   20篇
  2003年   12篇
  2002年   14篇
  2001年   10篇
  2000年   11篇
  1999年   3篇
排序方式: 共有381条查询结果,搜索用时 15 毫秒
261.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we consider the problem of determining bounds to the optimal burn‐in time and optimal replacement policy maximizing the steady state availability of a repairable system. It is assumed that two types of system failures may occur: One is Type I failure (minor failure), which can be removed by a minimal repair, and the other is Type II failure (catastrophic failure), which can be removed only by a complete repair. Assuming that the underlying lifetime distribution of the system has a bathtub‐shaped failure rate function, upper and lower bounds for the optimal burn‐in time are provided. Furthermore, some other applications of optimal burn‐in are also considered. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
262.
We study a two‐machine flow shop scheduling problem with no‐wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst‐case ratio of 3/2. For the second scenario, we offer a 4/3‐approximation algorithm. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
263.
In this paper we first introduce and study the notion of failure profiles which is based on the concepts of paths and cuts in system reliability. The relationship of failure profiles to two notions of component importance is highlighted, and an expression for the density function of the lifetime of a coherent system, with independent and not necessarily identical component lifetimes, is derived. We then demonstrate the way that failure profiles can be used to establish likelihood ratio orderings of lifetimes of two systems. Finally we use failure profiles to obtain bounds, in the likelihood ratio sense, on the lifetimes of coherent systems with independent and not necessarily identical component lifetimes. The bounds are relatively easy to compute and use. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
264.
We consider a parallel‐machine scheduling problem with jobs that require setups. The duration of a setup does not depend only on the job just completed but on a number of preceding jobs. These setup times are referred to as history‐dependent. Such a scheduling problem is often encountered in the food processing industry as well as in other process industries. In our model, we consider two types of setup times—a regular setup time and a major setup time that becomes necessary after several “hard‐to‐clean” jobs have been processed on the same machine. We consider multiple objectives, including facility utilization, flexibility, number of major setups, and tardiness. We solve several special cases assuming predetermined job sequences and propose strongly polynomial time algorithms to determine the optimal timing of the major setups for given job sequences. We also extend our analysis to develop pseudopolynomial time algorithms for cases with additional objectives, including the total weighted completion time, the total weighted tardiness, and the weighted number of tardy jobs. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
265.
This article is concerned with a general multi‐class multi‐server priority queueing system with customer priority upgrades. The queueing system has various applications in inventory control, call centers operations, and health care management. Through a novel design of Lyapunov functions, and using matrix‐analytic methods, sufficient conditions for the queueing system to be stable or instable are obtained. Bounds on the queue length process are obtained by a sample path method, with the help of an auxiliary queueing system. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
266.
In system reliability analysis, for an n ‐component system, the estimation of the performance of the components in the system is not straightforward in practice, especially when the components are dependent. Here, by assuming the n components in the system to be identically distributed with a common distribution belonging to a scale‐family and the dependence structure between the components being known, we discuss the estimation of the lifetime distributions of the components in the system based on the lifetimes of systems with the same structure. We develop a general framework for inference on the scale parameter of the component lifetime distribution. Specifically, the method of moments estimator (MME) and the maximum likelihood estimator (MLE) are derived for the scale parameter, and the conditions for the existence of the MLE are also discussed. The asymptotic confidence intervals for the scale parameter are also developed based on the MME and the MLE. General simulation procedures for the system lifetime under this model are described. Finally, some examples of two‐ and three‐component systems are presented to illustrate all the inferential procedures developed here. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
267.
Fully sequential indifference‐zone selection procedures have been proposed in the simulation literature to select the system with the best mean performance from a group of simulated systems. However, the existing sequential indifference‐zone procedures allocate an equal number of samples to the two systems in comparison even if their variances are drastically different. In this paper we propose new fully sequential indifference‐zone procedures that allocate samples according to the variances. We show that the procedures work better than several existing sequential indifference‐zone procedures when variances of the systems are different. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
268.
We consider a generalized one‐dimensional bin‐packing model where the cost of a bin is a nondecreasing concave function of the utilization of the bin. Four popular heuristics from the literature of the classical bin‐packing problem are studied: First Fit (FF), Best Fit (BF), First Fit Decreasing (FFD), and Best Fit Decreasing (BFD). We analyze their worst‐case performances when they are applied to our model. The absolute worst‐case performance ratio of FF and BF is shown to be exactly 2, and that of FFD and BFD is shown to be exactly 1.5. Computational experiments are also conducted to test the performance of these heuristics. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
269.
One traditional application of queueing models is to help set staffing requirements in service systems, but the way to do so is not entirely straightforward, largely because demand in service systems typically varies greatly by the time of day. This article discusses ways—old and new—to cope with that time‐varying demand. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
270.
We consider a two‐phase service queueing system with batch Poisson arrivals and server vacations denoted by MX/G1G2/1. The first phase service is an exhaustive or a gated bulk service, and the second phase is given individually to the members of a batch. By a reduction to an MX/G/1 vacation system and applying the level‐crossing method to a workload process with two types of vacations, we obtain the Laplace–Stieltjes transform of the sojourn time distribution in the MX/G1G2/1 with single or multiple vacations. The decomposition expression is derived for the Laplace–Stieltjes transform of the sojourn time distribution, and the first two moments of the sojourn time are provided. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号