首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   949篇
  免费   347篇
  国内免费   83篇
  2024年   1篇
  2023年   16篇
  2022年   7篇
  2021年   22篇
  2020年   30篇
  2019年   25篇
  2018年   13篇
  2017年   69篇
  2016年   74篇
  2015年   53篇
  2014年   67篇
  2013年   111篇
  2012年   82篇
  2011年   70篇
  2010年   57篇
  2009年   97篇
  2008年   71篇
  2007年   84篇
  2006年   74篇
  2005年   51篇
  2004年   60篇
  2003年   41篇
  2002年   45篇
  2001年   30篇
  2000年   29篇
  1999年   18篇
  1998年   14篇
  1997年   17篇
  1996年   11篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   4篇
  1991年   1篇
  1990年   8篇
  1989年   2篇
排序方式: 共有1379条查询结果,搜索用时 15 毫秒
901.
为将分岔理论应用于数字液压缸稳定性分析与设计,对系统非线性模型进行了等价变换和光滑处理,同时为克服刚性问题影响,基于量纲分析理论通过选择合适的基本量将模型无因次化,并采用预测-校正延拓法确保分岔求解的精度和效率。在各自可行区间内,对重要参数和不确定参数进行了单参数分岔分析,结果表明:数字液压缸的初始设计具有一定的稳定裕度和鲁棒性,系统受不确定参数的影响较小;运用分岔理论,能够有效揭示各参数对系统动态稳定性的影响,为系统参数设计提供指导。  相似文献   
902.
使用固体姿控小火箭是实现动能拦截器快响应和高精度姿态控制的最佳方案之一。针对一种新型动能拦截器姿控小火箭布局,提出了点火组合混合搜索算法。描述了动能拦截器姿控小火箭的配置方案,分析了弹体自旋需求。设计了一种结合目标排序法和区间搜索法的点火组合混合搜索算法:当可用小火箭个数较少时,采用目标排序法;当可用小火箭个数较多时,采用区间搜索法。指令力矩近似仿真结果及姿态控制数值仿真结果表明:该算法能够有效地近似指令力矩,实现快速高精度的姿态跟踪。  相似文献   
903.
Decades ago, simulation was famously characterized as a “method of last resort,” to which analysts should turn only “when all else fails.” In those intervening decades, the technologies supporting simulation—computing hardware, simulation‐modeling paradigms, simulation software, design‐and‐analysis methods—have all advanced dramatically. We offer an updated view that simulation is now a very appealing option for modeling and analysis. When applied properly, simulation can provide fully as much insight, with as much precision as desired, as can exact analytical methods that are based on more restrictive assumptions. The fundamental advantage of simulation is that it can tolerate far less restrictive modeling assumptions, leading to an underlying model that is more reflective of reality and thus more valid, leading to better decisions. Published 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 293–303, 2015  相似文献   
904.
The literature on the product mix decision (or master production scheduling) under the Theory of Constraints (TOC), which was developed in the past two decades, has addressed this problem as a static operational decision. Consequently, the developed solution techniques do not consider the system's dynamism and the associated challenges arising from the complexity of operations during the implementation of master production schedules. This paper aims to address this gap by developing a new heuristic approach for master production scheduling under the TOC philosophy that considers the main operational factors that influence actual throughput after implementation of the detailed schedule. We examine the validity of the proposed heuristic by comparison to Integer Linear Programming and two heuristics in a wide range of scenarios using simulation modelling. Statistical analyses indicate that the new algorithm leads to significantly enhanced performance during implementation for problems with setup times. The findings show that the bottleneck identification approach in current methods in the TOC literature is not effective and accurate for complex operations in real‐world job shop systems. This study contributes to the literature on master production scheduling and product mix decisions by enhancing the likelihood of achieving anticipated throughput during the implementation of the detailed schedule. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 357–369, 2015  相似文献   
905.
Hub terminals are important entities in modern distribution networks and exist for any transportation device, that is, cross docks and parcel distribution centers for trucks, container ports for ships, railway yards for trains, and hub airports for aircraft. In any of these hubs, the mid‐term planning task of synchronizing the transshipment of goods and passengers when servicing the transportation devices has to be solved, for which many different solution approaches specifically tailored to the respective application exist. We, however, take a unified view on synchronization in hubs and aim at a general building block. As a point of origin, a basic vertex ordering problem, the circular arrangement problem (CAP), is identified. We explain the relation between the CAP and hub processes, develop suited algorithms for solving the CAP, and extend the basic CAP by multiple additions, for example, arrival times, limited storage space, and multiple service points, make the problem adaptable to a wide range of hub terminals. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 454–469, 2015  相似文献   
906.
Motivated by the presence of loss‐averse decision making behavior in practice, this article considers a supply chain consisting of a firm and strategic consumers who possess an S‐shaped loss‐averse utility function. In the model, consumers decide the purchase timing and the firm chooses the inventory level. We find that the loss‐averse consumers' strategic purchasing behavior is determined by their perceived gain and loss from strategic purchase delay, and the given rationing risk. Thus, the firm that is cognizant of this property tailors its inventory stocking policy based on the consumers' loss‐averse behavior such as their perceived values of gain and loss, and their sensitivity to them. We also demonstrate that the firm's equilibrium inventory stocking policy reflects both the economic logic of the traditional newsvendor inventory model, and the loss‐averse behavior of consumers. The equilibrium order quantity is significantly different from those derived from models that assume that the consumers are risk neutral and homogeneous in their valuations. We show that the firm that ignores strategic consumer's loss‐aversion behavior tends to keep an unnecessarily high inventory level that leads to excessive leftovers. Our numerical experiments further reveal that in some extreme cases the firm that ignores strategic consumer's loss‐aversion behavior generates almost 92% more leftovers than the firm that possesses consumers’ loss‐aversion information and takes it into account when making managerial decisions. To mitigate the consumer's forward‐looking behavior, we propose the adoption of the practice of agile supply chain management, which possesses the following attributes: (i) procuring inventory after observing real‐time demand information, (ii) enhanced design (which maintains the current production mix but improves the product performance to a higher level), and (iii) customized design (which maintains the current performance level but increases the variety of the current production line to meet consumers’ specific demands). We show that such a practice can induce the consumer to make early purchases by increasing their rationing risk, increasing the product value, or diversifying the product line. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 435–453, 2015  相似文献   
907.
A new connection between the distribution of component failure times of a coherent system and (adaptive) progressively Type‐II censored order statistics is established. Utilizing this property, we develop inferential procedures when the data is given by all component failures until system failure in two scenarios: In the case of complete information, we assume that the failed component is also observed whereas in the case of incomplete information, we have only information about the failure times but not about the components which have failed. In the first setting, we show that inferential methods for adaptive progressively Type‐II censored data can directly be applied to the problem. For incomplete information, we face the problem that the corresponding censoring plan is not observed and that the available inferential procedures depend on the knowledge of the used censoring plan. To get estimates for distributional parameters, we propose maximum likelihood estimators which can be obtained by solving the likelihood equations directly or via an Expectation‐Maximization‐algorithm type procedure. For an exponential distribution, we discuss also a linear estimator to estimate the mean. Moreover, we establish exact distributions for some estimators in the exponential case which can be used, for example, to construct exact confidence intervals. The results are illustrated by a five component bridge system. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 512–530, 2015  相似文献   
908.
We consider two specially structured assemble‐to‐order (ATO) systems—the N‐ and W‐systems—under continuous review, stochastic demand, and nonidentical component replenishment leadtimes. Using a hybrid approach that combines sample‐path analysis, linear programming, and the tower property of conditional expectation, we characterize the optimal component replenishment policy and common‐component allocation rule, present comparative statics of the optimal policy parameters, and show that some commonly used heuristic policies can lead to significant optimality loss. The optimality results require certain symmetry in the cost parameters. In the absence of this symmetry, we show that, for systems with high demand volume, the asymptotically optimal policy has essentially the same structure; otherwise, the optimal policies have no clear structure. For these latter systems, we develop heuristic policies and show their effectiveness. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 62: 617–645, 2015  相似文献   
909.
借鉴对机动频率建模的思想,对机动目标的截断正态概率密度模型进行改进,提出了一种改进的截断正态概率密度模型(ICN模型),并将防发散算法与多尺度估计理论结合,用克服滤波器发散的S(k)算法对基本的多尺度估计进行机动检测和相应改进,得到单模型单传感器系统的防发散多尺度估计算法,旨在减小噪声影响,减小机动目标模型不准确带来的跟踪误差,改善跟踪效果。  相似文献   
910.
对电力系统中重要节点进行有效区分,有助于在资源有限的条件下对重要节点施加额外保护或改变拓扑结构,从而提高系统鲁棒性、降低事故发生的概率。受网页排序算法启发,提出电气链接结构分析的随机方法(electrical stochastic approach for link structure analysis, E-SALSA)用于电力系统重要节点评估。该算法综合考虑了电力系统拓扑结构、潮流等因素对节点的影响,能够有效反映电力系统的真实情况,并且其特点更符合电力系统背景。在IEEE300节点电力系统中,使用失负荷规模和最大子群规模两个指标对E-SALSA算法与电气介数算法、基于共同引用的超链接引导的主题搜索(model based on co-citation hypertext induced topic search, MBCC-HITS)算法进行了对比分析。结果证明E-SALSA算法相比电气介数算法在两个指标上都具有优势,相比MBCC-HITS算法能够更综合考虑各方面因素对节点的影响,进而证明了E-SALSA算法的合理性、有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号