首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   85篇
  国内免费   7篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   10篇
  2019年   5篇
  2018年   4篇
  2017年   9篇
  2016年   12篇
  2015年   15篇
  2014年   15篇
  2013年   12篇
  2012年   16篇
  2011年   18篇
  2010年   6篇
  2009年   14篇
  2008年   10篇
  2007年   9篇
  2006年   19篇
  2005年   18篇
  2004年   14篇
  2003年   7篇
  2002年   6篇
  2001年   6篇
  2000年   12篇
  1999年   8篇
  1998年   11篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
181.
基于时间序无圈有向图的多准则优化成像调度   总被引:4,自引:0,他引:4       下载免费PDF全文
合理有效地利用遥感卫星资源获取更多高质量影像数据是卫星成像调度的重要工作。提出了一种新的成像调度解决方案。应用图论相关理论,建立卫星成像时间序无圈有向图模型,利用多项准则作为衡量标准对不同成像路径进行评价,提出时间序多准则最短路径算法求取优化成像路径。理论分析和实验表明,该解决方案可以在较短时间内获得多条pareto优化成像路径,具有良好的调度性能。  相似文献   
182.
In many practical situations of production scheduling, it is either necessary or recommended to group a large number of jobs into a relatively small number of batches. A decision needs to be made regarding both the batching (i.e., determining the number and the size of the batches) and the sequencing (of batches and of jobs within batches). A setup cost is incurred whenever a batch begins processing on a given machine. This paper focuses on batch scheduling of identical processing‐time jobs, and machine‐ and sequence‐independent setup times on an m‐machine flow‐shop. The objective is to find an allocation to batches and their schedule in order to minimize flow‐time. We introduce a surprising and nonintuitive solution for the problem. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
183.
We consider the single machine parallel batch scheduling problems to minimize makespan and total completion time, respectively, under precedence relations. The complexities of these two problems are reported as open in the literature. In this paper, we settle these open questions by showing that both problems are strongly NP‐hard, even when the precedence relations are chains. When the processing times of jobs are directly agreeable or inversely agreeable with the precedence relations, there is an O(n2) time algorithm to minimize the makespan. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
184.
A problem we call recurrent construction involves manufacturing large, complex, expensive products such as airplanes, houses, and ships. Customers order configurations of these products well in advance of due dates for delivery. Early delivery may not be permitted. How should the manufacturer determine when to purchase and release materials before fabrication, assembly, and delivery? Major material expenses, significant penalties for deliveries beyond due dates, and long product makespans in recurrent construction motivate choosing a release timetable that maximizes the net present value of cash flows. Our heuristic first projects an initial schedule that dispatches worker teams to tasks for the backlogged products, and then solves a series of maximal closure problems to find material release times that maximize NPV. This method compares favorably with other well‐known work release heuristics in solution quality for large problems over a wide range of operating conditions, including order strength, cost structure, utilization level, batch policy, and uncertainty level. Computation times exhibit near linear growth in problem size. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
185.
We study a two‐machine flow shop scheduling problem with no‐wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst‐case ratio of 3/2. For the second scenario, we offer a 4/3‐approximation algorithm. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
186.
In this work, we examine port crane scheduling with spatial and separation constraints. Although common to most port operations, these constraints have not been previously studied. We assume that cranes cannot cross, there is a minimum distance between cranes and jobs cannot be done simultaneously. The objective is to find a crane‐to‐job matching which maximizes throughput under these constraints. We provide dynamic programming algorithms, a probabilistic tabu search, and a squeaky wheel optimization heuristic for solution. Experiments show the heuristics perform well compared with optimal solutions obtained by CPLEX for small scale instances where a squeaky wheel optimization with local search approach gives good results within short times. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
187.
We study a class of new scheduling problems which involve types of teamwork tasks. Each teamwork task consists of several components, and requires a team of processors to complete, with each team member to process a particular component of the task. Once the processor completes its work on the task, it will be available immediately to work on the next task regardless of whether the other components of the last task have been completed or not. Thus, the processors in a team neither have to start, nor have to finish, at the same time as they process a task. A task is completed only when all of its components have been processed. The problem is to find an optimal schedule to process all tasks, under a given objective measure. We consider both deterministic and stochastic models. For the deterministic model, we find that the optimal schedule exhibits the pattern that all processors must adopt the same sequence to process the tasks, even under a general objective function GC = F(f1(C1), f2(C2), … , fn(Cn)), where fi(Ci) is a general, nondecreasing function of the completion time Ci of task i. We show that the optimal sequence to minimize the maximum cost MC = max fi(Ci) can be derived by a simple rule if there exists an order f1(t) ≤ … ≤ fn(t) for all t between the functions {fi(t)}. We further show that the optimal sequence to minimize the total cost TC = ∑ fi(Ci) can be constructed by a dynamic programming algorithm. For the stochastic model, we study three optimization criteria: (A) almost sure minimization; (B) stochastic ordering; and (C) expected cost minimization. For criterion (A), we show that the results for the corresponding deterministic model can be easily generalized. However, stochastic problems with criteria (B) and (C) become quite difficult. Conditions under which the optimal solutions can be found for these two criteria are derived. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
188.
In a master surgery scheduling (MSS) problem, a hospital's operating room (OR) capacity is assigned to different medical specialties. This task is critical since the risk of assigning too much or too little OR time to a specialty is associated with overtime or deficit hours of the staff, deferral or delay of surgeries, and unsatisfied—or even endangered—patients. Most MSS approaches in the literature focus only on the OR while neglecting the impact on downstream units or reflect a simplified version of the real‐world situation. We present the first prediction model for the integrated OR scheduling problem based on machine learning. Our three‐step approach focuses on the intensive care unit (ICU) and reflects elective and urgent patients, inpatients and outpatients, and all possible paths through the hospital. We provide an empirical evaluation of our method with surgery data for Universitätsklinikum Augsburg, a German tertiary care hospital with 1700 beds. We show that our model outperforms a state‐of‐the‐art model by 43% in number of predicted beds. Our model can be used as supporting tool for hospital managers or incorporated in an optimization model. Eventually, we provide guidance to support hospital managers in scheduling surgeries more efficiently.  相似文献   
189.
The majority of scheduling literature assumes that the machines are available at all times. In this paper, we study single machine scheduling problems where the machine maintenance must be performed within certain intervals and hence the machine is not available during the maintenance periods. We also assume that if a job is not processed to completion before the machine is stopped for maintenance, an additional setup is necessary when the processing is resumed. Our purpose is to schedule the maintenance and jobs to minimize some performance measures. The objective functions that we consider are minimizing the total weighted job completion times and minimizing the maximum lateness. In both cases, maintenance must be performed within a fixed period T, and the time for the maintenance is a decision variable. In this paper, we study two scenarios concerning the planning horizon. First, we show that, when the planning horizon is long in relation to T, the problem with either objective function is NP-complete, and we present pseudopolynomial time dynamic programming algorithms for both objective functions. In the second scenario, the planning horizon is short in relation to T. However, part of the period T may have elapsed before we schedule any jobs in this planning horizon, and the remaining time before the maintenance is shorter than the current planning horizon. Hence we must schedule one maintenance in this planning horizon. We show that the problem of minimizing the total weighted completion times in this scenario is NP-complete, while the shortest processing time (SPT) rule and the earliest due date (EDD) rule are optimal for the total completion time problem and the maximum lateness problem respectively. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 845–863, 1999  相似文献   
190.
本文着重研究适应向量巨型机体系结构的高效程序设计技术。围绕减少指令流水线阻塞,提高多功能部件并行度,数据调度与局部化技术三个方面进行了深入的讨论,给出了一系列设计高效程序的方法和技巧。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号