首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   80篇
  国内免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   11篇
  2018年   4篇
  2017年   18篇
  2016年   21篇
  2015年   17篇
  2014年   18篇
  2013年   72篇
  2012年   18篇
  2011年   24篇
  2010年   25篇
  2009年   23篇
  2008年   22篇
  2007年   38篇
  2006年   23篇
  2005年   18篇
  2004年   20篇
  2003年   12篇
  2002年   19篇
  2001年   11篇
  2000年   14篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1990年   1篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
361.
We study competitive due‐date and capacity management between the marketing and engineering divisions within an engineer‐to‐order (ETO) firm. Marketing interacts directly with the customers and quotes due‐dates for their orders. Engineering is primarily concerned with the efficient utilization of resources and is willing to increase capacity if the cost is compensated. The two divisions share the responsibility for timely delivery of the jobs. We model the interaction between marketing and engineering as a Nash game and investigate the effect of internal competition on the equilibrium decisions. We observe that the internal competition not only degrades the firm's overall profitability but also the serviceability. Finally, we extend our analysis to multiple‐job settings that consider both flexible and inflexible capacity. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
362.
为了能对提高高斯色噪声中正弦信号的检测能力,提出了二阶自相关和四阶累积量预处理的信号相位匹配检测法.仿真结果表明,高斯色噪声中四阶累积量预处理的信号相位匹配检测法的检测性能接近于高斯白噪声下匹配滤波器,优于二阶自相关的信号相位匹配检测法的检测性能,更优于的信号相位匹配的最小二乘检测器.  相似文献   
363.
We consider the problem of scheduling n independent and simultaneously available jobs without preemption on a single machine, where the machine has a fixed maintenance activity. The objective is to find the optimal job sequence to minimize the total amount of late work, where the late work of a job is the amount of processing of the job that is performed after its due date. We first discuss the approximability of the problem. We then develop two pseudo‐polynomial dynamic programming algorithms and a fully polynomial‐time approximation scheme for the problem. Finally, we conduct extensive numerical studies to evaluate the performance of the proposed algorithms. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 172–183, 2016  相似文献   
364.
We present a validation of a centralized feedback control law for robotic or partially robotic water craft whose task is to defend a harbor from an intruding fleet of water craft. Our work was motivated by the need to provide harbor defenses against hostile, possibly suicidal intruders, preferably using unmanned craft to limit potential casualties. Our feedback control law is a sample‐data receding horizon control law, which requires the solution of a complex max‐min problem at the start of each sample time. In developing this control law, we had to deal with three challenges. The first was to develop a max‐min problem that captures realistically the nature of the defense‐intrusion game. The second was to ensure the solution of this max‐min problem can be accomplished in a small fraction of the sample time that would be needed to control a possibly fast moving craft. The third, to which this article is dedicated, was to validate the effectiveness of our control law first through computer simulations pitting a computer against a computer or a computer against a human, then through the use of model hovercraft in a laboratory, and finally on the Chesapeake Bay, using Yard Patrol boats. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 247–259, 2016  相似文献   
365.
Motivated by applications to service systems, we develop simple engineering approximation formulas for the steady‐state performance of heavily loaded G/GI/n+GI multiserver queues, which can have non‐Poisson and nonrenewal arrivals and non‐exponential service‐time and patience‐time distributions. The formulas are based on recently established Gaussian many‐server heavy‐traffic limits in the efficiency‐driven (ED) regime, where the traffic intensity is fixed at ρ > 1, but the approximations also apply to systems in the quality‐and‐ED regime, where ρ > 1 but ρ is close to 1. Good performance across a wide range of parameters is obtained by making heuristic refinements, the main one being truncation of the queue length and waiting time approximations to nonnegative values. Simulation experiments show that the proposed approximations are effective for large‐scale queuing systems for a significant range of the traffic intensity ρ and the abandonment rate θ, roughly for ρ > 1.02 and θ > 2.0. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 187–217, 2016  相似文献   
366.
This article studies coherent systems of heterogenous and statistically dependent components' lifetimes. We present a sufficient and necessary condition for a stochastically longer system lifetime resulted by allocating a single active redundancy. For exchangeable components' lifetimes, allocating the redundancy to the component with more minimal path sets is proved to produce a more reliable system, and for systems with stochastic arrangement increasing components' lifetimes and symmetric structure with respect to two components, allocating the redundancy to the weaker one brings forth a larger reliability. Several numerical examples are presented to illustrate the theoretical results as well. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 335–345, 2016  相似文献   
367.
We study an admission control model in revenue management with nonstationary and correlated demands over a finite discrete time horizon. The arrival probabilities are updated by current available information, that is, past customer arrivals and some other exogenous information. We develop a regret‐based framework, which measures the difference in revenue between a clairvoyant optimal policy that has access to all realizations of randomness a priori and a given feasible policy which does not have access to this future information. This regret minimization framework better spells out the trade‐offs of each accept/reject decision. We proceed using the lens of approximation algorithms to devise a conceptually simple regret‐parity policy. We show the proposed policy achieves 2‐approximation of the optimal policy in terms of total regret for a two‐class problem, and then extend our results to a multiclass problem with a fairness constraint. Our goal in this article is to make progress toward understanding the marriage between stochastic regret minimization and approximation algorithms in the realm of revenue management and dynamic resource allocation. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 433–448, 2016  相似文献   
368.
Consider an N‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. For 1 ≤ jN, orders for item j can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every Tj periods, one reviews the current stock level of item j and decides on deliveries for each of the next Tj periods, thus incurring an item‐by‐item fixed cost kj. There is also a joint fixed cost whenever any item is reviewed. The problem is to find review periods T1, T2, …, TN and an ordering policy satisfying the average cost criterion. The current article builds on earlier results for the single‐item case. We prove an optimal policy exists, give conditions where it has a simple form, and develop a branch and bound algorithm for its computation. We also provide two heuristic policies with O(N) computational requirements. Computational experiments indicate that the branch and bound algorithm can handle normal demand problems with N ≤ 10 and that both heuristics do well for a wide variety of problems with N ranging from 2 to 200; moreover, the performance of our heuristics seems insensitive to N. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:430–449, 2001  相似文献   
369.
Acceptance sampling plans are used to assess the quality of an ongoing production process, in addition to the lot acceptance. In this paper, we consider sampling inspection plans for monitoring the Markov‐dependent production process. We construct sequential plans that satisfy the usual probability requirements at acceptable quality level and rejectable quality level and, in addition, possess the minimum average sample number under semicurtailed inspection. As these plans result in large sample sizes, especially when the serial correlation is high, we suggest new plans called “systematic sampling plans.” The minimum average sample number systematic plans that satisfy the probability requirements are constructed. Our algorithm uses some simple recurrence relations to compute the required acceptance probabilities. The optimal systematic plans require much smaller sample sizes and acceptance numbers, compared to the sequential plans. However, they need larger production runs to make a decision. Tables for choosing appropriate sequential and systematic plans are provided. The problem of selecting the best systematic sampling plan is also addressed. The operating characteristic curves of some of the sequential and the systematic plans are compared, and are observed to be almost identical. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 451–467, 2001  相似文献   
370.
A 2‐dimensional rectangular (cylindrical) k‐within‐consecutive‐r × s‐out‐of‐m × n:F system is the rectangular (cylindrical) m × n‐system if the system fails whenever k components in a r × s‐submatrix fail. This paper proposes a recursive algorithm for the reliability of the 2‐dimensional k‐within‐consecutive‐r × s‐out‐m × n:F system, in the rectangular case and the cylindrical case. This algorithm requires min ( O (mkr(n?s)), O (nks(m?r))), and O (mkrn) computing time in the rectangular case and the cylindrical case, respectively. The proposed algorithm will be demonstrated and some numerical examples will be shown. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 625–637, 2001.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号