首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   80篇
  国内免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   11篇
  2018年   4篇
  2017年   18篇
  2016年   21篇
  2015年   17篇
  2014年   18篇
  2013年   72篇
  2012年   18篇
  2011年   24篇
  2010年   25篇
  2009年   23篇
  2008年   22篇
  2007年   38篇
  2006年   23篇
  2005年   18篇
  2004年   20篇
  2003年   12篇
  2002年   19篇
  2001年   11篇
  2000年   14篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1990年   1篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
371.
In this paper the problem of minimizing makespan in a two‐machine openshop is examined. A heuristic algorithm is proposed, and its worst case performance ratio and complexity are analyzed. The average case performance is evaluated using an empirical study. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 129–145, 1999  相似文献   
372.
Typically weapon systems have an inherent systematic error and a random error for each round, centered around its mean point of impact. The systematic error is common to all aimings. Assume such a system for which there is a preassigned amount of ammunition of n rounds to engage a given target simultaneously, and which is capable of administering their fire with individual aiming points (allowing “offsets”). The objective is to determine the best aiming points for the system so as to maximize the probability of hitting the target by at least one of the n rounds. In this paper we focus on the special case where the target is linear (one‐dimensional) and there are no random errors. We prove that as long as the aiming error is symmetrically distributed and possesses one mode at zero, the optimal aiming is independent of the particular error distribution, and we specify the optimal aiming points. Possible extensions are further discussed, as well as civilian applications in manufacturing, radio‐electronics, and detection. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 323–333, 1999  相似文献   
373.
Various indices of component importance with respect to system reliability have been proposed. The most popular one is the Birnbaum importance. In particular, a special case called uniform Birnbaum importance in which all components have the same reliability p has been widely studied for the consecutive‐k system. Since it is not easy to compare uniform Birnbaum importance, the literature has looked into the case p = ½, p → 1, or p ≥ ½. In this paper, we look into the case p → 0 to complete the spectrum of examining Birnbaum importance over the whole range of p. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 159–166, 2002; DOI 10.1002/nav.10001  相似文献   
374.
In this paper a case study dealing with the maintenance problem of jib cranes is presented. A jib crane is viewed as a complex system whose performance is observed as a single realization over period of time. After pointing out limitations of existing stochastic models to analyze the observed realization a new family of bivariate stochastic processes is introduced. The data of jib crane is analyzed using new model and cross‐validated using part of the data set. It is noted that the new family of stochastic processes is useful to analyze bivariate data where one of the variables is finitely valued and the other is nonnegative and continuous. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 231–243, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10006  相似文献   
375.
We consider the ??p‐norm multi‐facility minisum location problem with linear and distance constraints, and develop the Lagrangian dual formulation for this problem. The model that we consider represents the most general location model in which the dual formulation is not found in the literature. We find that, because of its linear objective function and less number of variables, the Lagrangian dual is more useful. Additionally, the dual formulation eliminates the differentiability problem in the primal formulation. We also provide the Lagrangian dual formulation of the multi‐facility minisum location problem with the ??pb‐norm. Finally, we provide a numerical example for solving the Lagrangian dual formulation and obtaining the optimum facility locations from the solution of the dual formulation. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 410–421, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10010  相似文献   
376.
377.
This papers deals with the classical resource‐constrained project scheduling problem (RCPSP). There, the activities of a project have to be scheduled subject to precedence and resource constraints. The objective is to minimize the makespan of the project. We propose a new heuristic called self‐adapting genetic algorithm to solve the RCPSP. The heuristic employs the well‐known activity list representation and considers two different decoding procedures. An additional gene in the representation determines which of the two decoding procedures is actually used to compute a schedule for an individual. This allows the genetic algorithm to adapt itself to the problem instance actually solved. That is, the genetic algorithm learns which of the alternative decoding procedures is the more successful one for this instance. In other words, not only the solution for the problem, but also the algorithm itself is subject to genetic optimization. Computational experiments show that the mechanism of self‐adaptation is capable to exploit the benefits of both decoding procedures. Moreover, the tests show that the proposed heuristic is among the best ones currently available for the RCPSP. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 433–448, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10029  相似文献   
378.
张琦  冷相文  李博 《国防科技》2020,41(5):52-58
利用海底小目标数据库中的数据信息辅助探猎雷作战,可以摆脱传统探猎雷作战行动中的盲目性,优化反水雷作战流程,有效提高反水雷作战效率。如何科学构建数据库功能,合理设计数据存储、查询和调用的方式方法,以充分发挥各类探测数据的潜在作用,对辅助反水雷战术指挥决策具有重要意义。本文根据海底小目标对探猎雷作战的影响,提出目标位置比对、声纳图像比对、探测态势比对和数据统计分析是海底小目标数据库所应具备的主要功能,结合探猎雷过程中的典型作战环节,阐述了各项功能的基本运用方法和实现手段,指出数据的“量”“质”以及采集规范和维护管理制度,均是数据库建设的重要前提,并对建设数据库所应具备的保障条件进行了 说明。  相似文献   
379.
In urban rail transit systems of large cities, the headway and following distance of successive trains have been compressed as much as possible to enhance the corridor capacity to satisfy extremely high passenger demand during peak hours. To prevent train collisions and ensure the safety of trains, a safe following distance of trains must be maintained. However, this requirement is subject to a series of complex factors, such as the uncertain train braking performance, train communication delay, and driver reaction time. In this paper, we propose a unified mathematical framework to analyze the safety‐oriented reliability of metro train timetables with different corridor capacities, that is, the train traffic density, and determine the most reliable train timetable for metro lines in an uncertain environment. By employing a space‐time network representation in the formulations, the reliability‐based train timetabling problem is formulated as a nonlinear stochastic programming model, in which we use 0‐1 variables to denote the time‐dependent velocity and position of all involved trains. Several reformulation techniques are developed to obtain an equivalent mixed integer programming model with quadratic constraints (MIQCP) that can be solved to optimality by some commercial solvers. To improve the computational efficiency of the MIQCP model, we develop a dual decomposition solution framework that decomposes the primal problem into several sets of subproblems by dualizing the coupling constraints across different samples. An exact dynamic programming combined with search space reduction strategies is also developed to solve the exact optimal solutions of these subproblems. Two sets of numerical experiments, which involve a relatively small‐scale case and a real‐world instance based on the operation data of the Beijing subway Changping Line are implemented to verify the effectiveness of the proposed approaches.  相似文献   
380.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号