首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   80篇
  国内免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   11篇
  2018年   4篇
  2017年   18篇
  2016年   21篇
  2015年   17篇
  2014年   18篇
  2013年   72篇
  2012年   18篇
  2011年   24篇
  2010年   25篇
  2009年   23篇
  2008年   22篇
  2007年   38篇
  2006年   23篇
  2005年   18篇
  2004年   20篇
  2003年   12篇
  2002年   19篇
  2001年   11篇
  2000年   14篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1990年   1篇
排序方式: 共有442条查询结果,搜索用时 31 毫秒
431.
In this study, we propose a new parsimonious policy for the stochastic joint replenishment problem in a single‐location, N‐item setting. The replenishment decisions are based on both group reorder point‐group order quantity and the time since the last decision epoch. We derive the expressions for the key operating characteristics of the inventory system for both unit and compound Poisson demands. In a comprehensive numerical study, we compare the performance of the proposed policy with that of existing ones over a standard test bed. Our numerical results indicate that the proposed policy dominates the existing ones in 100 of 139 instances with comparably significant savings for unit demands. With batch demands, the savings increase as the stochasticity of demand size gets larger. We also observe that it performs well in environments with low demand diversity across items. The inventory system herein also models a two‐echelon setting with a single item, multiple retailers, and cross docking at the upper echelon. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
432.
讨论了Laplaoe分布中,方差已知的情况下,均值θ在简单半序约束下的最小L_1保序回归(ML_1IR),就最小L_1保序回归的唯一性以及一些其它性质予以了讨论,并且给出了计算方法。  相似文献   
433.
If the number of customers in a queueing system as a function of time has a proper limiting steady‐state distribution, then that steady‐state distribution can be estimated from system data by fitting a general stationary birth‐and‐death (BD) process model to the data and solving for its steady‐state distribution using the familiar local‐balance steady‐state equation for BD processes, even if the actual process is not a BD process. We show that this indirect way to estimate the steady‐state distribution can be effective for periodic queues, because the fitted birth and death rates often have special structure allowing them to be estimated efficiently by fitting parametric functions with only a few parameters, for example, 2. We focus on the multiserver Mt/GI/s queue with a nonhomogeneous Poisson arrival process having a periodic time‐varying rate function. We establish properties of its steady‐state distribution and fitted BD rates. We also show that the fitted BD rates can be a useful diagnostic tool to see if an Mt/GI/s model is appropriate for a complex queueing system. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 664–685, 2015  相似文献   
434.
In this article, we study generalizations of some of the inventory models with nonlinear costs considered by Rosling in (Oper. Res. 50 (2002) 797–809). In particular, we extend the study of both the periodic review and the compound renewal demand processes from a constant lead time to a random lead time. We find that the quasiconvexity properties of the cost function (and therefore the existence of optimal (s, S) policies), holds true when the lead time has suitable log‐concavity properties. The results are derived by structural properties of renewal delayed processes stopped at an independent random time and by the study of log‐concavity properties of compound distributions. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 345–356, 2015  相似文献   
435.
Motivated by some practical applications, we study a new integrated loading and transportation scheduling problem. Given a set of jobs, a single crane is available to load jobs, one by one, onto semitrailers with a given capacity. Loaded semitrailers are assigned to tractors for transportation tasks. Subject to limited resources (crane, semitrailers, and tractors), the problem is to determine (1) an assignment of jobs to semitrailers for loading tasks, (2) a sequence for the crane to load jobs onto semitrailers, (3) an assignment of loaded semitrailers to tractors for transportation tasks, and (4) a transportation schedule of assigned tractors such that the completion time of the last transportation task is minimized. We first formulate the problem as a mixed integer linear programming model (MILPM) and prove that the problem is strongly NP‐hard. Then, optimality properties are provided which are useful in establishing an improved MILPM and designing solution algorithms. We develop a constructive heuristic, two LP‐based heuristics, and a recovering beam search heuristic to solve this problem. An improved procedure for solutions by heuristics is also presented. Furthermore, two branch‐and‐bound (B&B) algorithms with two different lower bounds are developed to solve the problem to optimality. Finally, computational experiments using both real data and randomly generated data demonstrate that our heuristics are highly efficient and effective. In terms of computational time and the number of instances solved to optimality in a time limit, the B&B algorithms are better than solving the MILPM. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 416–433, 2015  相似文献   
436.
In Assemble‐To‐Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components to end‐product demand. In this article, we examine periodic‐review ATO systems under linear holding and backlogging costs with a component installation stock policy and a First‐Come‐First‐Served (FCFS) allocation policy. We show that the FCFS allocation policy decouples the problem of optimal component allocation over time into deterministic period‐by‐period optimal component allocation problems. We denote the optimal allocation of components to end‐product demand as multimatching. We solve the multi‐matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation optimization problem with both upper and lower bounds is proposed. Numerical experiments for base‐stock component replenishment policies show that under optimal base‐stock policies and optimal allocation, remnant stock holding costs must be taken into account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015  相似文献   
437.
In due‐window assignment problems, jobs completed within a designated time interval are regarded as being on time, whereas early and tardy jobs are penalized. The objective is to determine the location and size of the due‐window, as well as the job schedule. We address a common due‐window assignment problem on parallel identical machines with unit processing time jobs. We show that the number of candidate values for the optimal due‐window starting time and for the optimal due‐window completion time are bounded by 2. We also prove that the starting time of the first job on each of the machines is either 0 or 1, thus introducing a fairly simple, constant‐time solution for the problem. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
438.
This article examines optimal path finding problems where cost function and constraints are direction, location, and time dependent. Recent advancements in sensor and data‐processing technology facilitate the collection of detailed real‐time information about the environment surrounding a ground vehicle, an airplane, or a naval vessel. We present a navigation model that makes use of such information. We relax a number of assumptions from existing literature on path‐finding problems and create an accurate, yet tractable, model suitable for implementation for a large class of problems. We present a dynamic programming model which integrates our earlier results for direction‐dependent, time and space homogeneous environment, and consequently, improves its accuracy, efficiency, and run‐time. The proposed path finding model also addresses limited information about the surrounding environment, control‐feasibility of the considered paths, such as sharpest feasible turns a vehicle can make, and computational demands of a time‐dependent environment. To demonstrate the applicability and performance of our path‐finding algorithm, computational experiments for a short‐range ship routing in dynamic wave‐field problem are presented. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
439.
We present two frameworks for designing random search methods for discrete simulation optimization. One of our frameworks is very broad (in that it includes many random search methods), whereas the other one considers a special class of random search methods called point‐based methods, that move iteratively between points within the feasible region. Our frameworks involve averaging, in that all decisions that require estimates of the objective function values at various feasible solutions are based on the averages of all observations collected at these solutions so far. Also, the methods are adaptive in that they can use information gathered in previous iterations to decide how simulation effort is expended in the current iteration. We show that the methods within our frameworks are almost surely globally convergent under mild conditions. Thus, the generality of our frameworks and associated convergence guarantees makes the frameworks useful to algorithm developers wishing to design efficient and rigorous procedures for simulation optimization. We also present two variants of the simulated annealing (SA) algorithm and provide their convergence analysis as example application of our point‐based framework. Finally, we provide numerical results that demonstrate the empirical effectiveness of averaging and adaptivity in the context of SA. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
440.
We consider a setting in which inventory plays both promotional and service roles; that is, higher inventories not only improve service levels but also stimulate demand by serving as a promotional tool (e.g., as the result of advertising effect by the enhanced product visibility). Specifically, we study the periodic‐review inventory systems in which the demand in each period is uncertain but increases with the inventory level. We investigate the multiperiod model with normal and expediting orders in each period, that is, any shortage will be met through emergency replenishment. Such a model takes the lost sales model as a special case. For the cases without and with fixed order costs, the optimal inventory replenishment policy is shown to be of the base‐stock type and of the (s,S) type, respectively. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号