全文获取类型
收费全文 | 1271篇 |
免费 | 339篇 |
国内免费 | 222篇 |
专业分类
1832篇 |
出版年
2024年 | 3篇 |
2023年 | 6篇 |
2022年 | 17篇 |
2021年 | 33篇 |
2020年 | 16篇 |
2019年 | 11篇 |
2018年 | 14篇 |
2017年 | 48篇 |
2016年 | 76篇 |
2015年 | 61篇 |
2014年 | 124篇 |
2013年 | 66篇 |
2012年 | 128篇 |
2011年 | 118篇 |
2010年 | 77篇 |
2009年 | 127篇 |
2008年 | 90篇 |
2007年 | 112篇 |
2006年 | 100篇 |
2005年 | 117篇 |
2004年 | 80篇 |
2003年 | 71篇 |
2002年 | 55篇 |
2001年 | 55篇 |
2000年 | 47篇 |
1999年 | 41篇 |
1998年 | 42篇 |
1997年 | 19篇 |
1996年 | 20篇 |
1995年 | 5篇 |
1994年 | 17篇 |
1993年 | 8篇 |
1992年 | 7篇 |
1991年 | 8篇 |
1990年 | 8篇 |
1989年 | 2篇 |
1988年 | 3篇 |
排序方式: 共有1832条查询结果,搜索用时 15 毫秒
181.
建立某型火炮的虚拟样机模型,通过改变土质介质刚度,形成了不同的土质情况,并在此基础上进行火炮发射仿真试验,测取火炮炮架间关键部位的受力情况及炮口中心点在炮口平面内的位移情况,将仿真结果进行对比分析,研究土质变化对火炮射击性能的影响。 相似文献
182.
根据新型喷嘴的结构特点,构建了喷嘴的物理模型和数学模型,并采用Fluent6.2.16软件中的LES模型对喷嘴流场进行数值计算。模拟结果表明:射流进入喷嘴收缩段后会发生强烈的剪切作用,引起流场速度和压力的急剧变化。收缩角对喷嘴内部流场的影响较大,本模型中收缩角优化值取30°,圆柱段长度对喷嘴内部流场也存在影响,本模型中该长度优化值取32mm。 相似文献
183.
《防务技术》2022,18(10):1822-1833
High-performance ballistic fibers, such as aramid fiber and ultra-high-molecular-weight polyethylene (UHMWPE), are commonly used in anti-ballistic structures due to their low density, high tensile strength and high specific modulus. However, their low modulus in the thickness direction and insufficient shear strength limits their application in certain ballistic structure. In contrast, carbon fiber reinforced epoxy resin matrix composites (CFRP) have the characteristics of high modulus in the thickness direction and high shear resistance. However, carbon fibers are rarely used and applied for protection purposes. A hybridization with aramid fiber reinforced epoxy resin matrix composites (AFRP) and CFRP has the potential to improve the stiffness and the ballistic property of the typical ballistic fiber composites. The hybrid effects on the flexural property and ballistic performance of the hybrid CFRP/AFRP laminates were investigated. Through conducting mechanical property tests and ballistic tests, two sets of reliable simulation parameters for AFRP and CFRP were established using LS-DYNA software, respectively. The experimental results suggested that by increasing the content of CFRP that the flexural properties of hybrid CFRP/AFRP laminates were enhanced. The ballistic tests’ results and the simulation illustrated that the specific energy absorption by the perforation method of CFRP achieved 77.7% of AFRP. When CFRP was on the striking face, the shear resistance of the laminates and the resistance force to the projectiles was promoted at the initial penetration stage. The proportion of fiber tensile failures in the AFRP layers was also enhanced with the addition of CFRP during the penetration process. These improvements resulted in the ballistic performance of hybrid CFRP/AFRP laminates was better than AFRP when the CFRP content was 20 wt% and 30 wt%. 相似文献
184.
We study a stochastic outpatient appointment scheduling problem (SOASP) in which we need to design a schedule and an adaptive rescheduling (i.e., resequencing or declining) policy for a set of patients. Each patient has a known type and associated probability distributions of random service duration and random arrival time. Finding a provably optimal solution to this problem requires solving a multistage stochastic mixed‐integer program (MSMIP) with a schedule optimization problem solved at each stage, determining the optimal rescheduling policy over the various random service durations and arrival times. In recognition that this MSMIP is intractable, we first consider a two‐stage model (TSM) that relaxes the nonanticipativity constraints of MSMIP and so yields a lower bound. Second, we derive a set of valid inequalities to strengthen and improve the solvability of the TSM formulation. Third, we obtain an upper bound for the MSMIP by solving the TSM under the feasible (and easily implementable) appointment order (AO) policy, which requires that patients are served in the order of their scheduled appointments, independent of their actual arrival times. Fourth, we propose a Monte Carlo approach to evaluate the relative gap between the MSMIP upper and lower bounds. Finally, in a series of numerical experiments, we show that these two bounds are very close in a wide range of SOASP instances, demonstrating the near‐optimality of the AO policy. We also identify parameter settings that result in a large gap in between these two bounds. Accordingly, we propose an alternative policy based on neighbor‐swapping. We demonstrate that this alternative policy leads to a much tighter upper bound and significantly shrinks the gap. 相似文献
185.
This article demonstrates a novel approach for material nonlinear analysis. This analysis procedure eliminates tedious and lengthy step by step incremental and then iterative procedure adopted classically and gives direct results in the linear as well as in nonlinear range of the material behavior. Use of elastic moduli is eliminated. Instead, stress and strain functions are used as the material input in the analysis procedure. These stress and strain functions are directly derived from the stress-strain behavior of the material by the method of curve fitting. This way, the whole stress-strain diagram is utilized in the analysis which naturally exposes the response of structure when loading is in nonlinear range of the material behavior. It is found that it is an excellent computational procedure adopted so far for material nonlinear analysis which gives very accurate results, easy to adopt and simple in calculations. The method eliminates all types of linearity assumptions in basic derivations of equations and hence, eliminates all types of possibility of errors in the analysis procedure as well. As it is required to know stress distribution in the structural body by proper modelling and structural idealization, the proposed analysis approach can be regarded as stress-based analysis procedure. Basic problems such as uniaxial problem, beam bending, and torsion problems are solved. It is found that approach is very suitable for solving the problems of fracture mechanics. Energy release rate for plate with center crack and double cantilever beam specimen is also evaluated. The approach solves the fracture problem with relative ease in strength of material style calculations. For all problems, results are compared with the classical displacement-based liner theory. 相似文献
186.
Due to its high strength, high density, high hardness and good penetration capabilities, Depleted ura-nium alloys have already shined in armor-piercing projectiles. There should also be a lot of room for improvement in the application of fragment killing elements. Therefore, regarding the performance of the depleted uranium alloy to penetrate the target plate, further investigation is needed to analyze its advantages and disadvantages compared to tungsten alloy. To study the difference in penetration per-formance between depleted uranium alloy and tungsten alloy fragments,firstly, a theoretical analysis of the adiabatic shear sensitivity of DU and tungsten alloys was given from the perspective of material constitutive model. Then, taking the cylindrical fragment penetration target as the research object, the penetration process and velocity characteristics of the steel target plates penetrated by DU alloy frag-ment and tungsten alloy fragment were compared and analyzed, by using finite element software ANSYS/LS-DYNA and Lagrange algorithm. Lastly, the influence of different postures when impacting target and different fragment shapes on the penetration results is carried out in the research. The results show that in the penetration process of the DU and tungsten alloy fragments, the self-sharpening properties of the DU alloy can make the fragment head sharper and the penetrating ability enhance. Under the same conditions, the penetration capability of cylindrical fragment impacting target in vertical posture is better than that in horizontal posture, and the penetration capability of the spherical fragment is slightly better than that of cylindrical fragment. 相似文献
187.
The Cr-plated coating inside a gun barrel can effectively improve the barrel's erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gun-powder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel's inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface's ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel. 相似文献
188.
Jian-hao Dou Xin Jia Zheng-xiang Huang Xiao-hui Gu Ying-min Zheng Bin Ma Qiang-qiang Xiao 《防务技术》2021,17(3):846-858
The use of a shaped liner driven by electromagnetic force is a new means of forming jets. To study the mechanism of jet formation driven by electromagnetic force, we considered the current skin effect and the characteristics of electromagnetic loading and established a coupling model of"Electric—Magnetic—Force"and the theoretical model of jet formation under electromagnetic force. The jet formation and penetration of conical and trumpet liners have been calculated. Then, a numerical simulation of liner collapse under electromagnetic force, jet generation, and the stretching motion were performed using an ANSYS multiphysics processor. The calculated jet velocity, jet shape, and depth of penetration were consistent with the experimental results, with a relative error of less than 10%. In addition, we calculated the jet formation of different curvature trumpet liners driven by the same loading condition and ob-tained the influence rule of the curvature of the liner on jet formation. Results show that the theoretical model and the ANSYS multiphysics numerical method can effectively calculate the jet formation of liners driven by electromagnetic force, and in a certain range, the greater the curvature of the liner is, the greater the jet velocity is. 相似文献
189.
舰船航向保持的变结构控制及仿真 总被引:4,自引:1,他引:4
运用变结构控制理论和计算机仿真技术研究舰船航向保持过程的变结构控制问题,针对舰船定向航行要求航向准、舵角小的控制特点,采用二次型最优控制方法设计滑动模态超平面,设计了满足滑模超平面到达条件的指数趋近律,导出了对应的控制律。同时,为进行比较研究,设计了PID控制器并整定了相关参数。理论分析与仿真研究表明:对于舰船定向航行,变结构控制方案正确可行,控制效果优于PID控制方案。 相似文献
190.
以检验舰载水声系统信息融合性能为目标,提出一种在海洋声学环境、敌我战术机动过程扣声纳处理结果仿真条件下的水声系统信息融合性能评估方法,通过某型水声系统的两种融合模块的实际评估应用,证明该方法有效可行。 相似文献