首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   87篇
  国内免费   4篇
  581篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   22篇
  2018年   25篇
  2017年   35篇
  2016年   34篇
  2015年   20篇
  2014年   23篇
  2013年   110篇
  2012年   23篇
  2011年   27篇
  2010年   25篇
  2009年   23篇
  2008年   28篇
  2007年   34篇
  2006年   27篇
  2005年   18篇
  2004年   23篇
  2003年   15篇
  2002年   15篇
  2001年   14篇
  2000年   11篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
91.
In this article, we consider a classic dynamic inventory control problem of a self‐financing retailer who periodically replenishes its stock from a supplier and sells it to the market. The replenishment decisions of the retailer are constrained by cash flow, which is updated periodically following purchasing and sales in each period. Excess demand in each period is lost when insufficient inventory is in stock. The retailer's objective is to maximize its expected terminal wealth at the end of the planning horizon. We characterize the optimal inventory control policy and present a simple algorithm for computing the optimal policies for each period. Conditions are identified under which the optimal control policies are identical across periods. We also present comparative statics results on the optimal control policy. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   
92.
通过简要介绍消防网络的构成及功能,进行网络安全及需求分析,并结合消防办公信息网的实际恃况,提出制定安全对策的几种建议.  相似文献   
93.
94.
Consider a distribution system with a central warehouse and multiple retailers. Customer demand arrives at each of the retailers continuously at a constant rate. The retailers replenish their inventories from the warehouse which in turn orders from an outside supplier with unlimited stock. There are economies of scale in replenishing the inventories at both the warehouse and the retail level. Stockouts at the retailers are backlogged. The system incurs holding and backorder costs. The objective is to minimize the long‐run average total cost in the system. This paper studies the cost effectiveness of (R, Q) policies in the above system. Under an (R, Q) policy, each facility orders a fixed quantity Q from its supplier every time its inventory position reaches a reorder point R. It is shown that (R, Q) policies are at least 76% effective. Numerical examples are provided to further illustrate the cost effectiveness of (R, Q) policies. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 422–439, 2000  相似文献   
95.
The “gold‐mining” decision problem is concerned with the efficient utilization of a delicate mining equipment working in a number of different mines. Richard Bellman was the first to consider this type of a problem. The solution found by Bellman for the finite‐horizon, continuous‐time version of the problem with two mines is not overly realistic since he assumed that fractional parts of the same mining equipment could be used in different mines and this fraction could change instantaneously. In this paper, we provide some extensions to this model in order to produce more operational and realistic solutions. Our first model is concerned with developing an operational policy where the equipment may be switched from one mine to the other at most once during a finite horizon. In the next extension we incorporate a cost component in the objective function and assume that the horizon length is not fixed but it is the second decision variable. Structural properties of the optimal solutions are obtained using nonlinear programming. Each model and its solution is illustrated with a numerical example. The models developed here may have potential applications in other areas including production of items requiring the same machine or choosing a sequence of activities requiring the same resource. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 186–203, 2002; DOI 10.1002/nav.10008  相似文献   
96.
Multiple Objectives Optimization is much seen in combination with linear functions and even with linear programming, together with an adding of the objectives by using weights. With distance functions, normalization instead of weights is used. It is also possible that together with an additive direct influence of the objectives on the utility function a mutual utility of the objectives exists under the form of a multiplicative representation. A critical comment is brought on some representations of this kind. A full‐multiplicative form may offer other opportunities, which will be discussed at length in an effort to exclude weights and normalization. This theoretical approach is followed by an application for arms procurement. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 327–340, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10014  相似文献   
97.
There is a finite cyclic graph. The hider chooses one of all nodes except the specified one, and he hides an (immobile) object there. At the beginning the seeker is at the specified node. After the seeker chooses an ordering of the nodes except the specified one, he examines each nodes in that order until he finds the object, traveling along edges. It costs an amount when he moves from a node to an adjacent one and also when he checks a node. While the hider wishes to maximize the sum of the traveling costs and the examination costs which are required to find the object, the seeker wishes to minimize it. The problem is modeled as a two‐person zero‐sum game. We solve the game when unit costs (traveling cost + examination cost) have geometrical relations depending on nodes. Then we give properties of optimal strategies of both players. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
98.
We study contracts between a single retailer and multiple suppliers of two substitutable products, where suppliers have fixed capacities and present the retailer cost contracts for their supplies. After observing the contracts, the retailer decides how much capacity to purchase from each supplier, to maximize profits from the purchased capacity from the suppliers plus his possessed inventory (endowment). This is modeled as a noncooperative, nonzero‐sum game, where suppliers, or principals, move simultaneously as leaders and the retailer, the common agent, is the sole follower. We are interested in the form of the contracts in equilibrium, their effect on the total supply chain profit, and how the profit is split between the suppliers and the retailer. Under mild assumptions, we characterize the set of all equilibrium contracts and discuss all‐unit and marginal‐unit quantity discounts as special cases. We also show that the supply chain is coordinated in equilibrium with a unique profit split between the retailer and the suppliers. Each supplier's profit is equal to the marginal contribution of her capacity to supply chain profits in equilibrium. The retailer's profit is equal to the total revenue collected from the market minus the payments to the suppliers and the associated sales costs.  相似文献   
99.
Let X and Xτ denote the lifetime and the residual life at age τ of a system, respectively. X is said to be a NBUL random variable if Xτ is smaller than X in Laplace order, i.e., XτL X. We obtain some characterizations for this class of life distribution by means of the lifetime of a series system and the residual life at random time. We also discuss preservation properties for this class of life distribution under shock models. Finally, under the assumption that the lifetimes have the NBUL property, we make stochastic comparisons between some basic replacement policies. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 578–591, 2001.  相似文献   
100.
In this article, we discuss the optimal allocation problem in a multiple stress levels life‐testing experiment when an extreme value regression model is used for statistical analysis. We derive the maximum likelihood estimators, the Fisher information, and the asymptotic variance–covariance matrix of the maximum likelihood estimators. Three optimality criteria are defined and the optimal allocation of units for two‐ and k‐stress level situations are determined. We demonstrate the efficiency of the optimal allocation of units in a multiple stress levels life‐testing experiment by using real experimental situations discussed earlier by McCool and Nelson and Meeker. Monte Carlo simulations are used to show that the optimality results hold for small sample sizes as well. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号