首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   18篇
  国内免费   2篇
  2024年   1篇
  2022年   9篇
  2021年   16篇
  2020年   6篇
  2019年   6篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   7篇
  2013年   4篇
  2012年   8篇
  2011年   5篇
  2010年   8篇
  2009年   12篇
  2008年   11篇
  2007年   10篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1990年   2篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
61.
本文采用总变差递减(TVD)数值方法与强爆炸解析解相结合的手段,求解了炸药在爆炸容器内部产生的作用载荷。计算结果与实验值在几个典型位置进行了比较,二者有良好的符合。与单纯的数值方法相比,本文所探索的方法能有效地克服对称轴附近的数值振荡,不失为确定爆炸载荷的一种新途径。  相似文献   
62.
讨论了影响热管工作温度tv的主要因素,提出了控制钢──水热管工作温度(采暖装置的工作温度)的管长参数的确定原则,介绍了用于客车上的实例。  相似文献   
63.
The effects of magnesium/polytetrafluoroethylene (Mg/PTFE) pyrotechnic compositions on the coupled flow field and reignition mechanism are important aspects governing the performance and range of base bleed projectiles (BBPs).Owing to a decrease in pressure and temperature when the BBP leaves the muzzle,rapid depressurization occurs,which extinguishes the base bleed propellant.The Mg/PTFE py-rotechnic composition pressed in the igniter of the base bleed unit (BBU) provides additional energy to the BBU via a chemical reaction.Thus,the extinguished base bleed propellant is reignited under the effect of high-temperature combustion gas jets from the igniter.In this study,a numerical analysis is conducted to evaluate the effects of PTFE and Mg granularity as well as Mg/PTFE pyrotechnic compo-sitions.Owing to the rapid depressurization,the temperature and pressure was found to decrease for different Mg/PTFE pyrotechnic compositions.However,the depressurization time increased as the PTFE granularity increased,the Mg granularity decreased,and the Mg content increased.When the pressure in the combustion chamber of the BBU decreased to the atmospheric pressure,the combustion gas jets from the igniter expand upstream (rather than downstream).However,these combustion gas jets exhibit different axial and radial expansion characteristics depending on the pyrotechnic compositions used.The results show that the reignition delay time,td,of the base bleed propellant was 377.608,94.27,387.243,523.966,and 221.094 ms for cases A-E,respectively.Therefore,it was concluded that the Mg/PTFE pyrotechnic composition of case B was the most beneficial for the reignition of the base bleed propellant,with the earliest addition of energy and mass to the BBP.  相似文献   
64.
Thermal safety of modular charge which is fed into and retained in the chamber after gun fires consecutively is first investigated with cook-off method.A two-dimensional cook-off model of modular charge in gun chamber is established and the cook-off process of modular charge in gun chamber is numerically simulated.Then the effects of module number and firing condition on charge thermal safety are evaluated by researching the cook-off response characteristics of modules.The results show that,under conditions of different module numbers the cook-off responses all occur on the module closest to the boundary of missile,and the single-base propellants located at the inner surface of cartridge ignite first.When the number of loaded module changes from 1 to 6,the cook-off response temperatures vary little,only in a small range of 478.1 K-482.4 K.The cook-off response times decrease logarithmically in the range of 211.2 s-166.7 s with the increasing length of residual air gap in gun chamber.The simulation results are well matched with the experimental data.Furthermore,different firing conditions have great influence on the cook-off response time,minor influence on the initial response position and little in-fluence on the response temperature.Under the three conditions of consecutive 32 launches with 5 rounds/min,43 launches with 1 round/min,and 41 launches with different firing frequencies,the cook-off response temperatures are 479.2 K,481.1 K and 479.9 K respectively and the response times are 709.2 s,211.2 s and 214.4 s respectively.The response position is near the middle area of the inner cartridge surface in the former condition and near the right area in the latter two conditions.  相似文献   
65.
《防务技术》2022,18(10):1852-1862
To improve the thermal properties of aluminum (Al) in the energetic system, a coated structure with ammonium perchlorate (AP) was prepared by a facile approach. And N, N-Dimethylformamide (DMF) was chosen as an ideal solvent based on heterogeneous nucleation theory and molecular dynamics simulation. This coated structure could enlarge the contact area and improve the reaction environment to enhance the thermal properties. The addition of AP could accelerate oxidation temperature of Al with around 17.5 °C. And the heat release of 85@15 composition rises to 26.13 kJ/g and the reaction degree is 97.6% with higher peak pressure (254.6 kPa) and rise rate (1.397 MPa/s). An ideal ratio with 15 wt% AP was probed primarily. The high energy laser-induced shockwave experiment was utilized to simulate the reaction behavior in hot field. And the larger activated mixture of coated powder could release more energy to promote the growth of shockwave with higher speed up to 518.7 ± 55.9 m/s. In conclusion, 85@15 composition is expected to be applied in energetic system as a novel metal fuel.  相似文献   
66.
顶部开口条件下油罐油气爆炸数值模拟   总被引:3,自引:0,他引:3  
根据油罐油气爆炸特性,基于RNG k-ε湍流模型、Finate-Rate/Eddy-Dissipation化学反应模型和相应的控制方程,采用SIMPLE算法对顶部开口条件下油气爆炸发生与发展过程进行了数值模拟。基于数值模拟结果分析了顶部开口条件下油罐油气爆炸罐外超压和火焰特征,与实验结果吻合良好,该模型可以用来预测顶部开口条件下油罐油气爆炸强度。  相似文献   
67.
为解决黄葛增压站内4台室外整体式天然气压缩机组造成的噪声污染问题,结合生产运行要求、周边环境状况、噪声源分布及噪声特性,综合吸声、隔声、消声、阻尼减振、通风和泄压等技术,采用半密闭式降噪厂房和阻抗复合排气消声器等治理措施。治理后厂界噪声从64.2~72.1 dB(A)降至49.7~55.0 dB(A),距厂房最近厂界25 Hz声压值从97.9 dB降至84.2 dB,排气消声器出口噪声从84.3 dB(A)降至72.6 dB(A)且25Hz声压值从124.7 dB降至97 dB。厂界噪声达到GB 12348—2008《工业企业厂界环境噪声排放标准》3类要求,中、低频噪声强度减弱,解决了厂界噪声超标和噪声扰民问题。同时,为整体式天然气压缩机组噪声治理开辟了一条新途径,为日后降噪厂房和阻抗复合排气消声器广泛应用奠定了实践基础,为压缩机组噪声治理设计积累了宝贵经验。  相似文献   
68.
Composite solid propellants (CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides (MOs), complexes, metal powders and metal alloys have shown positive catalytic behaviour during the com-bustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.  相似文献   
69.
Fluoropolymers get increasing attention in energetic materials application due to the high fluorine content. To explore the effect of poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) on Al/MnO2 nanothermite, the samples with different contents are prepared and characterized by SEM, TG-DSC, XRD, and their ignition and combustion behavior are tested and recorded. The results show that P(VDF-HFP) as an energetic binder can combine the nanothermite components together, even exist in the gaps. The integrity of energetic materials has been improved. Thermal analysis shows that the addition of P(VDF-HFP) greatly changes the thermal reaction processes, and the exothermic peaks appear early, but the utilization of fuel and oxidizer is not efficient from the XRD results. Furthermore, the appropriate addition of P(VDF-HFP) can directly reduce the ignition energy threshold and increase the combustion time, which is necessary for the potential ignition charge application. The possible reasons for above phenomena are discussed and analyzed. This research provides a reference for improvement of thermite-based ignition charge formulation.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号