首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   80篇
  国内免费   6篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   9篇
  2019年   3篇
  2018年   4篇
  2017年   9篇
  2016年   12篇
  2015年   12篇
  2014年   13篇
  2013年   12篇
  2012年   15篇
  2011年   18篇
  2010年   6篇
  2009年   15篇
  2008年   10篇
  2007年   9篇
  2006年   18篇
  2005年   18篇
  2004年   14篇
  2003年   7篇
  2002年   6篇
  2001年   6篇
  2000年   12篇
  1999年   7篇
  1998年   10篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
131.
We address the capacitated lot‐sizing and scheduling problem with setup times, setup carry‐over, back‐orders, and parallel machines as it appears in a semiconductor assembly facility. The problem can be formulated as an extension of the capacitated lot‐sizing problem with linked lot‐sizes (CLSPL). We present a mixed integer (MIP) formulation of the problem and a new solution procedure. The solution procedure is based on a novel “aggregate model,” which uses integer instead of binary variables. The model is embedded in a period‐by‐period heuristic and is solved to optimality or near‐optimality in each iteration using standard procedures (CPLEX). A subsequent scheduling routine loads and sequences the products on the parallel machines. Six variants of the heuristic are presented and tested in an extensive computational study. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
132.
装备维修管理系统是一种新型维修管理模式,为解决现代装备协同维修过程中资源优化调度和分配的各类问题,从装备维修保障系统的需求分析入手,讨论了基于改进遗传算法的维修资源配置算法,并采用建模与仿真技术,设计实现了装备维修管理系统。  相似文献   
133.
We consider a class of production scheduling models with m identical machines in parallel and k different product types. It takes a time pi to produce one unit of product type i on any one of the machines. There is a demand stream for product type i consisting of ni units with each unit having a given due date. Before a machine starts with the production of a batch of products of type i a setup cost c is incurred. We consider several different objective functions. Each one of the objective functions has three components, namely a total setup cost, a total earliness cost, and a total tardiness cost. In our class of problems we find a relatively large number of problems that can be solved either in polynomial time or in pseudo‐polynomial time. The polynomiality or pseudo‐polynomiality is achieved under certain special conditions that may be of practical interest; for example, a regularity pattern in the string of due dates combined with earliness and tardiness costs that are similar for different types of products. The class of models we consider includes as special cases discrete counterparts of a number of inventory models that have been considered in the literature before, e.g., Wagner and Whitin (Manage Sci 5 (1958), 89–96) and Zangwill (Oper Res 14 (1966), 486–507; Manage Sci 15 (1969), 506–527). © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
134.
We consider the problem of assigning a set of jobs to different parallel machines of the same processing speed, where each job is compatible to only a subset of those machines. The machines can be linearly ordered such that a higher‐indexed machine can process all those jobs that a lower‐indexed machine can process. The objective is to minimize the makespan of the schedule. This problem is motivated by industrial applications such as cargo handling by cranes with nonidentical weight capacities, computer processor scheduling with memory constraints, and grades of service provision by parallel servers. We develop an efficient algorithm for this problem with a worst‐case performance ratio of + ε, where ε is a positive constant which may be set arbitrarily close to zero. We also present a polynomial time approximation scheme for this problem, which answers an open question in the literature. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
135.
A single server is faced with a collection of jobs of varying duration and urgency. Each job has a random lifetime during which it is available for nonpreemptive service. Should a job's lifetime expire before its service begins then it is lost from the system unserved. The goal is to schedule the jobs for service to maximize the expected number served to completion. Two heuristics have been proposed in the literature. One (labeled πS) operates a static priority among the job classes and works well in a “no premature job loss” limit, whereas the second (πM) is a myopic heuristic which works well when lifetimes are short. Both can exhibit poor performance for problems at some distance from the regimes for which they were designed. We develop a robustly good heuristic by an approximative approach to the application of a policy improvement step to the asymptotically optimal heuristic πS, in which we use a fluid model to obtain an approximation for the value function of πS. The performance of the proposed heuristic is investigated in an extensive numerical study. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   
136.
Lot splitting is a new approach for improving productivity by dividing production lots into sublots. This approach enables accelerating production flow, reducing lead‐time and increasing the utilization of organization resources. Most of the lot splitting models in the literature have addressed a single objective problem, usually the makespan or flowtime objectives. Simultaneous minimization of these two objectives has rarely been addressed in the literature despite of its high relevancy to most industrial environments. This work aims at solving a multiobjective lot splitting problem for multiple products in a flowshop environment. Tight mixed‐integer linear programming (MILP) formulations for minimizing the makespan and flowtime are presented. Then, the MinMax solution, which takes both objectives into consideration, is defined and suggested as an alternative objective. By solving the MILP model, it was found that minimizing one objective results in an average loss of about 15% in the other objective. The MinMax solution, on the other hand, results in an average loss of 4.6% from the furthest objective and 2.5% from the closest objective. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
137.
We consider the multitasking scheduling problem on unrelated parallel machines to minimize the total weighted completion time. In this problem, each machine processes a set of jobs, while the processing of a selected job on a machine may be interrupted by other available jobs scheduled on the same machine but unfinished. To solve this problem, we propose an exact branch‐and‐price algorithm, where the master problem at each search node is solved by a novel column generation scheme, called in‐out column generation, to maintain the stability of the dual variables. We use a greedy heuristic to obtain a set of initial columns to start the in‐out column generation, and a hybrid strategy combining a genetic algorithm and an exact dynamic programming algorithm to solve the pricing subproblems approximately and exactly, respectively. Using randomly generated data, we conduct numerical studies to evaluate the performance of the proposed solution approach. We also examine the effects of multitasking on the scheduling outcomes, with which the decision maker can justify making investments to adopt or avoid multitasking.  相似文献   
138.
基于随机搜索策略的中继卫星调度方法   总被引:1,自引:0,他引:1       下载免费PDF全文
高质量的调度方案不仅能满足用户的需求,还能为中继卫星系统的计划编制提供科学的决策手段和依据。针对日益多样化的用户需求,采用全新的中继卫星调度应用模式,允许用户提交多个可以滑动的时间窗口。面向这种调度模式,考虑中继业务中任务调度的灵活性和任务间的冲突,构建考虑多滑动窗口的中继卫星调度模型,并设计基于随机搜索策略的中继卫星调度算法。算法包括任务资源匹配与邻域生成、可用时间段生成、任务冲突分析、邻域搜索与冲突消解以及资源与任务集更新5个算子。通过仿真实验将该算法与基于时间自由度的启发式算法进行对比,验证了算法的有效性。  相似文献   
139.
《防务技术》2020,16(2):447-452
Sensor scheduling is used to improve the sensing performance in the estimation of targets' states. However, few papers are on the sensor scheduling for target detection with guiding information. This letter can remedy this deficiency. A risk-based target detection method with guiding information is provided firstly, based on which, the sensor scheduling approach is aiming at reducing the risk and uncertainty in target detection, namely risk-based sensor scheduling method. What should be stressed is that the Prediction Formula in sensor scheduling is proposed. Lastly, some examples are conducted to stress the effectiveness of this proposed method.  相似文献   
140.
《防务技术》2020,16(1):242-250
In decades, the battlefield environment is becoming more and more complex with plenty of electronic equipments. Thus, in order to improve the survivability of radar sensors and satisfy the requirement of maneuvering target tracking with a low probability of intercept, a non-myopic scheduling is proposed to minimize the radiation cost with tracking accuracy constraint. At first, the scheduling problem is formulated as a partially observable Markov decision process (POMDP). Then the tracking accuracy and radiation cost over the future finite time horizon are predicted by the posterior carmér-rao lower bound (PCRLB) and the hidden Markov model filter, respectively. Finally, the proposed scheduling is implemented efficiently by utilizing the branch and bound (B&B) pruning algorithm. Simulation results show that the performance of maneuvering target tracking was improved by the improved interacting multiple model (IMM), and the scheduler time and maximum memory consumption were significant reduced by the present B&B pruning algorithm without losing the optimal solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号