首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   60篇
  国内免费   22篇
  2024年   3篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   8篇
  2019年   7篇
  2018年   8篇
  2017年   12篇
  2016年   17篇
  2015年   17篇
  2014年   17篇
  2013年   23篇
  2012年   19篇
  2011年   15篇
  2010年   11篇
  2009年   17篇
  2008年   13篇
  2007年   16篇
  2006年   13篇
  2005年   13篇
  2004年   12篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
排序方式: 共有281条查询结果,搜索用时 15 毫秒
151.
机载反辐射导弹在攻击移动目标时容易受雷达关机影响而丢失目标,和常规主动雷达制导的反舰导弹协同攻击可以有效对抗目标雷达关机。为了达到协同作战目的,载机起飞前已知目标信息情况下,通过计划协同算法确定协同作战方案,方案包括载机和导弹各个航路点位置和到达该位置的时间点,然后按照在机场起飞前就制定好的方案实施具体作战行动。对计划协同算法进行了实例仿真,结果表明算法切实有效。  相似文献   
152.
We consider an expansion planning problem for Waste‐to‐Energy (WtE) systems facing uncertainty in future waste supplies. The WtE expansion plans are regarded as strategic, long term decisions, while the waste distribution and treatment are medium to short term operational decisions which can adapt to the actual waste collected. We propose a prediction set uncertainty model which integrates a set of waste generation forecasts and is constructed based on user‐specified levels of forecasting errors. Next, we use the prediction sets for WtE expansion scenario analysis. More specifically, for a given WtE expansion plan, the guaranteed net present value (NPV) is evaluated by computing an extreme value forecast trajectory of future waste generation from the prediction set that minimizes the maximum NPV of the WtE project. This problem is essentially a multiple stage min‐max dynamic optimization problem. By exploiting the structure of the WtE problem, we show this is equivalent to a simpler min‐max optimization problem, which can be further transformed into a single mixed‐integer linear program. Furthermore, we extend the model to optimize the guaranteed NPV by searching over the set of all feasible expansion scenarios, and show that this can be solved by an exact cutting plane approach. We also propose a heuristic based on a constant proportion distribution rule for the WtE expansion optimization model, which reduces the problem into a moderate size mixed‐integer program. Finally, our computational studies demonstrate that our proposed expansion model solutions are very stable and competitive in performance compared to scenario tree approaches. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 47–70, 2016  相似文献   
153.
We develop a risk‐sensitive strategic facility sizing model that makes use of readily obtainable data and addresses both capacity and responsiveness considerations. We focus on facilities whose original size cannot be adjusted over time and limits the total production equipment they can hold, which is added sequentially during a finite planning horizon. The model is parsimonious by design for compatibility with the nature of available data during early planning stages. We model demand via a univariate random variable with arbitrary forecast profiles for equipment expansion, and assume the supporting equipment additions are continuous and decided ex‐post. Under constant absolute risk aversion, operating profits are the closed‐form solution to a nontrivial linear program, thus characterizing the sizing decision via a single first‐order condition. This solution has several desired features, including the optimal facility size being eventually decreasing in forecast uncertainty and decreasing in risk aversion, as well as being generally robust to demand forecast uncertainty and cost errors. We provide structural results and show that ignoring risk considerations can lead to poor facility sizing decisions that deteriorate with increased forecast uncertainty. Existing models ignore risk considerations and assume the facility size can be adjusted over time, effectively shortening the planning horizon. Our main contribution is in addressing the problem that arises when that assumption is relaxed and, as a result, risk sensitivity and the challenges introduced by longer planning horizons and higher uncertainty must be considered. Finally, we derive accurate spreadsheet‐implementable approximations to the optimal solution, which make this model a practical capacity planning tool.© 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
154.
In this study, we illustrate a real‐time approximate dynamic programming (RTADP) method for solving multistage capacity decision problems in a stochastic manufacturing environment, by using an exemplary three‐stage manufacturing system with recycle. The system is a moderate size queuing network, which experiences stochastic variations in demand and product yield. The dynamic capacity decision problem is formulated as a Markov decision process (MDP). The proposed RTADP method starts with a set of heuristics and learns a superior quality solution by interacting with the stochastic system via simulation. The curse‐of‐dimensionality associated with DP methods is alleviated by the adoption of several notions including “evolving set of relevant states,” for which the value function table is built and updated, “adaptive action set” for keeping track of attractive action candidates, and “nonparametric k nearest neighbor averager” for value function approximation. The performance of the learned solution is evaluated against (1) an “ideal” solution derived using a mixed integer programming (MIP) formulation, which assumes full knowledge of future realized values of the stochastic variables (2) a myopic heuristic solution, and (3) a sample path based rolling horizon MIP solution. The policy learned through the RTADP method turned out to be superior to polices of 2 and 3. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   
155.
We consider a discrete time‐and‐space route‐optimization problem across a finite time horizon in which multiple searchers seek to detect one or more probabilistically moving targets. This article formulates a novel convex mixed‐integer nonlinear program for this problem that generalizes earlier models to situations with multiple targets, searcher deconfliction, and target‐ and location‐dependent search effectiveness. We present two solution approaches, one based on the cutting‐plane method and the other on linearization. These approaches result in the first practical exact algorithms for solving this important problem, which arises broadly in military, rescue, law enforcement, and border patrol operations. The cutting‐plane approach solves many realistically sized problem instances in a few minutes, while existing branch‐and‐bound algorithms fail. A specialized cut improves solution time by 50[percnt] in difficult problem instances. The approach based on linearization, which is applicable in important special cases, may further reduce solution time with one or two orders of magnitude. The solution time for the cutting‐plane approach tends to remain constant as the number of searchers grows. In part, then, we overcome the difficulty that earlier solution methods have with many searchers. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
156.
无人机系统自主控制技术研究现状与发展趋势   总被引:9,自引:1,他引:8       下载免费PDF全文
无人机系统是未来进行信息对抗、夺取信息优势、实施火力打击的重要手段。"自主性"是无人机系统区别于有人机最重要的技术特征,实现无人机系统的自主控制,提高其智能程度,是无人机系统的重要发展趋势。对无人机系统自主控制问题进行了阐述,首先分析了无人机系统自主控制技术的发展需求,然后介绍了自主控制的概念和自主等级的划分;分析了无人机系统自主控制技术的研究现状,提出了无人机系统自主控制的关键技术问题,主要包括体系结构、感知与认知、规划与控制、协同与交互等;最后对无人机系统自主控制技术的发展趋势进行了展望。  相似文献   
157.
巡航导弹航迹规划中雷达探测盲区的快速构造算法   总被引:1,自引:0,他引:1  
现代防空系统对巡航导弹的低空飞行和突防造成极大的威胁,利用防空系统中预警雷达的探测盲区进行隐蔽飞行是提高巡航导弹生存能力的重要手段,在此雷达探测盲区的快速构造算法是关键。说明了什么是雷达探测盲区,分析了影响雷达探测盲区的三个主要因素,并就对巡航导弹影响最大的雷达地形遮蔽盲区构造了基于极坐标的快速算法,并用一个地形实例验证了该方法的有效性。  相似文献   
158.
针对地心甚高轨道星座构形协同捕获控制问题,基于虚拟编队方法设计了协同捕获控制策略,采用三脉冲燃耗最优轨迹规划算法对构形捕获轨迹进行协同规划;并且结合自适应全程积分滑模控制器对卫星各自转移轨迹进行跟踪控制。以10万km轨道高度的三星星座构形捕获为例进行仿真验证,仿真结果表明:该策略可以有效应用于地心甚高轨道星座构形捕获控制,能够在燃耗较少的情况下使星座中卫星同时到达各自的标称位置,同时具有较高的精度。  相似文献   
159.
Capacity planning decisions affect a significant portion of future revenue. In equipment intensive industries, these decisions usually need to be made in the presence of both highly volatile demand and long capacity installation lead times. For a multiple product case, we present a continuous‐time capacity planning model that addresses problems of realistic size and complexity found in current practice. Each product requires specific operations that can be performed by one or more tool groups. We consider a number of capacity allocation policies. We allow tool retirements in addition to purchases because the stochastic demand forecast for each product can be decreasing. We present a cluster‐based heuristic algorithm that can incorporate both variance reduction techniques from the simulation literature and the principles of a generalized maximum flow algorithm from the network optimization literature. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
160.
计算机生成兵力具有智能行为是其最大的特点,也是当前研究的重点和难点。为了使计算机生成兵力决策的智能化水平有所提高,把复杂的决策过程进行分层规划,将各层中决策子任务的求解策略、推理策略与黑板推理方法中的多任务协同工作原理相结合,构造了基于黑板推理的计算机生成兵力决策模型。同时,也将模糊理论应用到决策模型中。有效地提高了计算机生成兵力的智能水平。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号