首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   85篇
  国内免费   18篇
  330篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   5篇
  2018年   1篇
  2017年   13篇
  2016年   17篇
  2015年   16篇
  2014年   18篇
  2013年   15篇
  2012年   13篇
  2011年   11篇
  2010年   10篇
  2009年   23篇
  2008年   17篇
  2007年   20篇
  2006年   24篇
  2005年   13篇
  2004年   17篇
  2003年   8篇
  2002年   6篇
  2001年   10篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1990年   9篇
  1989年   2篇
  1988年   1篇
排序方式: 共有330条查询结果,搜索用时 15 毫秒
91.
本文提出了一种具有广泛应用前景的程序设计方法——表格驱动(Formdriven)程序设计方法(以下简称表格驱动法)。文中首先描述了表格驱动法的基本思想、解的结构;分析了这种方法的特点与适用性;剖析了基于表格驱动法的办公自动化软件ALL-IN-1的设计思想,并指出表格驱动法特别适合于设计软件开发工具。  相似文献   
92.
大型舰船电力系统网络重构研究   总被引:6,自引:1,他引:6  
大型舰船电力系统的出现使供电方式由原来的辐射状向环形发展,其网络重构是一个崭新的问题.文中给出了大型舰船电力系统的网络拓扑结构并综合考虑了线路容量限制、节点电压约束及供电负荷优先性的重构数学模型,保证了各种情况下最大限度地给负荷供电.将规划遗传算法应用于所建模型的求解,并应用算例验证了此解法的可行性.  相似文献   
93.
Consider the conditional covering problem on an undirected graph, where each node represents a site that must be covered by a facility, and facilities may only be established at these nodes. Each facility can cover all sites that lie within some common covering radius, except the site at which it is located. Although this problem is difficult to solve on general graphs, there exist special structures on which the problem is easily solvable. In this paper, we consider the special case in which the graph is a simple path. For the case in which facility location costs do not vary based on the site, we derive characteristics of the problem that lead to a linear‐time shortest path algorithm for solving the problem. When the facility location costs vary according to the site, we provide a more complex, but still polynomial‐time, dynamic programming algorithm to find the optimal solution. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
94.
The parallel machine replacement problem consists of finding a minimum cost replacement policy for a finite population of economically interdependent machines. In this paper, we formulate a stochastic version of the problem and analyze the structure of optimal policies under general classes of replacement cost functions. We prove that for problems with arbitrary cost functions, there can be optimal policies where a machine is replaced only if all machines in worse states are replaced (Worse Cluster Replacement Rule). We then show that, for problems with replacement cost functions exhibiting nonincreasing marginal costs, there are optimal policies such that, in any stage, machines in the same state are either all kept or all replaced (No‐Splitting Rule). We also present an example that shows that economies of scale in replacement costs do not guarantee optimal policies that satisfy the No‐Splitting Rule. These results lead to the fundamental insight that replacement decisions are driven by marginal costs, and not by economies of scale as suggested in the literature. Finally, we describe how the optimal policy structure, i.e., the No‐Splitting and Worse Cluster Replacement Rules, can be used to reduce the computational effort required to obtain optimal replacement policies. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
95.
This paper addresses optimal power allocation in a wireless communication network under uncertainty. The paper introduces a framework for optimal transmit power allocation in a wireless network where both the useful and interference coefficients are random. The new approach to power control is based on a stochastic programming formulation with probabilistic SIR constraints. This allows to state the power allocation problem as a convex optimization problem assuming normally or log‐normally distributed communication link coefficients. Numerical examples illustrate the performance of the optimal stochastic power allocation. A distributed algorithm for the decentralized solution of the stochastic power allocation problem is discussed. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
96.
信息不完备群组决策问题的ANP方法   总被引:2,自引:1,他引:2  
群组决策是一类重要的决策问题,信息不完备的群组决策问题,因为判断矩阵有缺损,传统的AHP不能求解.文中将评价图引入信息不完备的群组决策问题,在此基础上提出用二次规划问题解决在这种情况下的权重确定问题,最后通过ANP的超矩阵得到总排序结果.经过实例检验,证明了ANP方法的正确性与可行性.  相似文献   
97.
In this article, we address a stochastic generalized assignment machine scheduling problem in which the processing times of jobs are assumed to be random variables. We develop a branch‐and‐price (B&P) approach for solving this problem wherein the pricing problem is separable with respect to each machine, and has the structure of a multidimensional knapsack problem. In addition, we explore two other extensions of this method—one that utilizes a dual‐stabilization technique and another that incorporates an advanced‐start procedure to obtain an initial feasible solution. We compare the performance of these methods with that of the branch‐and‐cut (B&C) method within CPLEX. Our results show that all B&P‐based approaches perform better than the B&C method, with the best performance obtained for the B&P procedure that includes both the extensions aforementioned. We also utilize a Monte Carlo method within the B&P scheme, which affords the use of a small subset of scenarios at a time to estimate the “true” optimal objective function value. Our experimental investigation reveals that this approach readily yields solutions lying within 5% of optimality, while providing more than a 10‐fold savings in CPU times in comparison with the best of the other proposed B&P procedures. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 131–143, 2014  相似文献   
98.
搜索路径给定时的最优搜索方案问题,也可以理解为是关于搜索者和目标的二人对策问题,主要讨论了当搜索路径给定时的单个搜索者和单个目标的搜索对策问题。首先根据问题的特点,利用动态规划和迭代的方法,确定关于目标逃逸路径混合策略的最优分区,证明该分区是多面体凸集;针对目标不同逃逸路径的分区,求出搜索者的最大期望收益,再将问题转化为二人有限零和对策,计算出搜索者的支付矩阵,确定最优搜索策略。最后结合海军护航行动,对我舰载直升机搜索小型海盗船进行分析和计算,说明搜索路径给定时的最优搜索对策对于双方的资源分配和提高搜索效率具有一定的应用价值。  相似文献   
99.
Stochastic network design is fundamental to transportation and logistic problems in practice, yet faces new modeling and computational challenges resulted from heterogeneous sources of uncertainties and their unknown distributions given limited data. In this article, we design arcs in a network to optimize the cost of single‐commodity flows under random demand and arc disruptions. We minimize the network design cost plus cost associated with network performance under uncertainty evaluated by two schemes. The first scheme restricts demand and arc capacities in budgeted uncertainty sets and minimizes the worst‐case cost of supply generation and network flows for any possible realizations. The second scheme generates a finite set of samples from statistical information (e.g., moments) of data and minimizes the expected cost of supplies and flows, for which we bound the worst‐case cost using budgeted uncertainty sets. We develop cutting‐plane algorithms for solving the mixed‐integer nonlinear programming reformulations of the problem under the two schemes. We compare the computational efficacy of different approaches and analyze the results by testing diverse instances of random and real‐world networks. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 154–173, 2017  相似文献   
100.
The assignment of personnel to teams is a fundamental managerial function typically involving several objectives and a variety of idiosyncratic practical constraints. Despite the prevalence of this task in practice, the process is seldom approached as an optimization problem over the reported preferences of all agents. This is due in part to the underlying computational complexity that occurs when intra-team interpersonal interactions are taken into consideration, and also due to game-theoretic considerations, when those taking part in the process are self-interested agents. Variants of this fundamental decision problem arise in a number of settings, including, for example, human resources and project management, military platooning, ride sharing, data clustering, and in assigning students to group projects. In this article, we study an analytical approach to “team formation” focused on the interplay between two of the most common objectives considered in the related literature: economic efficiency (i.e., the maximization of social welfare) and game-theoretic stability (e.g., finding a core solution when one exists). With a weighted objective across these two goals, the problem is modeled as a bi-level binary optimization problem, and transformed into a single-level, exponentially sized binary integer program. We then devise a branch-cut-and-price algorithm and demonstrate its efficacy through an extensive set of simulations, with favorable comparisons to other algorithms from the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号