首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   77篇
  国内免费   6篇
  2021年   3篇
  2019年   12篇
  2018年   5篇
  2017年   16篇
  2016年   19篇
  2015年   18篇
  2014年   23篇
  2013年   73篇
  2012年   17篇
  2011年   25篇
  2010年   24篇
  2009年   26篇
  2008年   24篇
  2007年   33篇
  2006年   21篇
  2005年   17篇
  2004年   19篇
  2003年   12篇
  2002年   16篇
  2001年   14篇
  2000年   14篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
排序方式: 共有437条查询结果,搜索用时 15 毫秒
241.
This article studies two due window scheduling problems to minimize the weighted number of early and tardy jobs in a two‐machine flow shop, where the window size is externally determined. These new scheduling models have many practical applications in real life. However, results on these problems have rarely appeared in the literature because of a lack of structural and optimality properties for solving them. In this article, we derive several dominance properties and theorems, including elimination rules and sequencing rules based on Johnsos order, lower bounds on the penalty, and upper bounds on the window location, which help to significantly trim the search space for the problems. We further show that the problems are NP‐hard in the ordinary sense only. We finally develop efficient pseudopolynomial dynamic programming algorithms for solving the problems. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
242.
We address the capacitated lot‐sizing and scheduling problem with setup times, setup carry‐over, back‐orders, and parallel machines as it appears in a semiconductor assembly facility. The problem can be formulated as an extension of the capacitated lot‐sizing problem with linked lot‐sizes (CLSPL). We present a mixed integer (MIP) formulation of the problem and a new solution procedure. The solution procedure is based on a novel “aggregate model,” which uses integer instead of binary variables. The model is embedded in a period‐by‐period heuristic and is solved to optimality or near‐optimality in each iteration using standard procedures (CPLEX). A subsequent scheduling routine loads and sequences the products on the parallel machines. Six variants of the heuristic are presented and tested in an extensive computational study. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
243.
Approximate dynamic programming (ADP) is a broad umbrella for a modeling and algorithmic strategy for solving problems that are sometimes large and complex, and are usually (but not always) stochastic. It is most often presented as a method for overcoming the classic curse of dimensionality that is well‐known to plague the use of Bellman's equation. For many problems, there are actually up to three curses of dimensionality. But the richer message of approximate dynamic programming is learning what to learn, and how to learn it, to make better decisions over time. This article provides a brief review of approximate dynamic programming, without intending to be a complete tutorial. Instead, our goal is to provide a broader perspective of ADP and how it should be approached from the perspective of different problem classes. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
244.
In this article, we study the Shewhart chart of Q statistics proposed for the detection of process mean shifts in start‐up processes and short runs. Exact expressions for the run‐length distribution of this chart are derived and evaluated using an efficient computational procedure. The procedure can be considerably faster than using direct simulation. We extend our work to analyze the practice of requiring multiple signals from the chart before responding, a practice sometimes followed with Shewhart charts. The results show that waiting to receive multiple signals severely reduces the probability of quickly detecting shifts in certain cases, and therefore may be considered a risky practice. Operational guidelines for practitioners implementing the chart are discussed. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
245.
当前各种油料需求预计单纯地追求表面精确而忽视实有误差,重静止轻动态,脱离了作战保障实际。从技术、勤务和战术结合的层面,将油料需求预计不确定性因素归结为油料消耗标准本身、计划与实际运用差异、影响油耗的自然因素考虑不同、作战任务理解判断差别四点,并对各自的误差范围进行了粗略分析。提出的不确定性因素及误差范围界定,有助于引发人们对作战油料需求预计新的思考,提高油料勤务理论研究和实践能力水平。  相似文献   
246.
In a caching game introduced by Alpern et al. (Alpern et al., Lecture notes in computer science (2010) 220–233) a Hider who can dig to a total fixed depth normalized to 1 buries a fixed number of objects among n discrete locations. A Searcher who can dig to a total depth of h searches the locations with the aim of finding all of the hidden objects. If he does so, he wins, otherwise the Hider wins. This zero‐sum game is complicated to analyze even for small values of its parameters, and for the case of 2 hidden objects has been completely solved only when the game is played in up to 3 locations. For some values of h the solution of the game with 2 objects hidden in 4 locations is known, but the solution in the remaining cases was an open question recently highlighted by Fokkink et al. (Fokkink et al., Search theory: A game theoretic perspective (2014) 85–104). Here we solve the remaining cases of the game with 2 objects hidden in 4 locations. We also give some more general results for the game, in particular using a geometrical argument to show that when there are 2 objects hidden in n locations and n→∞, the value of the game is asymptotically equal to h/n for hn/2. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 23–31, 2016  相似文献   
247.
In this article, we present a multistage model to optimize inventory control decisions under stochastic demand and continuous review. We first formulate the general problem for continuous stages and use a decomposition solution approach: since it is never optimal to let orders cross, the general problem can be broken into a set of single‐unit subproblems that can be solved in a sequential fashion. These subproblems are optimal control problems for which a differential equation must be solved. This can be done easily by recursively identifying coefficients and performing a line search. The methodology is then extended to a discrete number of stages and allows us to compute the optimal solution in an efficient manner, with a competitive complexity. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 32–46, 2016  相似文献   
248.
We consider an expansion planning problem for Waste‐to‐Energy (WtE) systems facing uncertainty in future waste supplies. The WtE expansion plans are regarded as strategic, long term decisions, while the waste distribution and treatment are medium to short term operational decisions which can adapt to the actual waste collected. We propose a prediction set uncertainty model which integrates a set of waste generation forecasts and is constructed based on user‐specified levels of forecasting errors. Next, we use the prediction sets for WtE expansion scenario analysis. More specifically, for a given WtE expansion plan, the guaranteed net present value (NPV) is evaluated by computing an extreme value forecast trajectory of future waste generation from the prediction set that minimizes the maximum NPV of the WtE project. This problem is essentially a multiple stage min‐max dynamic optimization problem. By exploiting the structure of the WtE problem, we show this is equivalent to a simpler min‐max optimization problem, which can be further transformed into a single mixed‐integer linear program. Furthermore, we extend the model to optimize the guaranteed NPV by searching over the set of all feasible expansion scenarios, and show that this can be solved by an exact cutting plane approach. We also propose a heuristic based on a constant proportion distribution rule for the WtE expansion optimization model, which reduces the problem into a moderate size mixed‐integer program. Finally, our computational studies demonstrate that our proposed expansion model solutions are very stable and competitive in performance compared to scenario tree approaches. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 47–70, 2016  相似文献   
249.
The notion of signature has been widely applied for the reliability evaluation of technical systems that consist of binary components. Multi‐state system modeling is also widely used for representing real life engineering systems whose components can have different performance levels. In this article, the concept of survival signature is generalized to a certain class of unrepairable homogeneous multi‐state systems with multi‐state components. With such a generalization, a representation for the survival function of the time spent by a system in a specific state or above is obtained. The findings of the article are illustrated for multi‐state consecutive‐k‐out‐of‐n system which perform its task at three different performance levels. The generalization of the concept of survival signature to a multi‐state system with multiple types of components is also presented. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 593–599, 2017  相似文献   
250.
现代空袭作战已成为结构破坏战,各类政治、经济、军事指挥中心、侦察预警设施,交通枢纽等点状目标已成为敌空袭的首选目标,而如何准确、可靠地预测点状保卫目标的空袭规模是防空作战的首要问题和难点。把点状保卫目标分为立体类目标、平面类目标、地下类目标,根据每类点状目标的特性,构建其相应的空袭规模预测模型,通过算例分析,该模型具有较高的可信度,能为各种辅助决策系统和指挥自动化系统提供决策支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号