首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   19篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   11篇
  2013年   7篇
  2012年   9篇
  2011年   13篇
  2010年   8篇
  2009年   11篇
  2008年   11篇
  2007年   17篇
  2006年   7篇
  2005年   8篇
  2004年   11篇
  2003年   3篇
  2002年   7篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
131.
Substitutable product inventory problem is analyzed using the concepts of stochastic game theory. It is assumed that there are two substitutable products that are sold by different retailers and the demand for each product is random. Game theoretic nature of this problem is the result of substitution between products. Since retailers compete for the substitutable demand, ordering decision of each retailer depends on the ordering decision of the other retailer. Under the discounted payoff criterion, this problem is formulated as a two‐person nonzero‐sum stochastic game. In the case of linear ordering cost, it is shown that there exists a Nash equilibrium characterized by a pair of stationary base stock strategies for the infinite horizon problem. This is the unique Nash equilibrium within the class of stationary base stock strategies. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 359–375, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10018  相似文献   
132.
We consider the coordination problem between a vendor and a buyer operating under generalized replenishment costs that include fixed costs as well as stepwise freight costs. We study the stochastic demand, single‐period setting where the buyer must decide on the order quantity to satisfy random demand for a single item with a short product life cycle. The full order for the cycle is placed before the cycle begins and no additional orders are accepted by the vendor. Due to the nonrecurring nature of the problem, the vendor's replenishment quantity is determined by the buyer's order quantity. Consequently, by using an appropriate pricing schedule to influence the buyer's ordering behavior, there is an opportunity for the vendor to achieve substantial savings from transportation expenses, which are represented in the generalized replenishment cost function. For the problem of interest, we prove that the vendor's expected profit is not increasing in buyer's order quantity. Therefore, unlike the earlier work in the area, it is not necessarily profitable for the vendor to encourage larger order quantities. Using this nontraditional result, we demonstrate that the concept of economies of scale may or may not work by identifying the cases where the vendor can increase his/her profits either by increasing or decreasing the buyer's order quantity. We prove useful properties of the expected profit functions in the centralized and decentralized models of the problem, and we utilize these properties to develop alternative incentive schemes for win–win solutions. Our analysis allows us to quantify the value of coordination and, hence, to identify additional opportunities for the vendor to improve his/her profits by potentially turning a nonprofitable transaction into a profitable one through the use of an appropriate tariff schedule or a vendor‐managed delivery contract. We demonstrate that financial gain associated with these opportunities is truly tangible under a vendor‐managed delivery arrangement that potentially improves the centralized solution. Although we take the viewpoint of supply chain coordination and our goal is to provide insights about the effect of transportation considerations on the channel coordination objective and contractual agreements, the paper also contributes to the literature by analyzing and developing efficient approaches for solving the centralized problem with stepwise freight costs in the single‐period setting. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
133.
We propose two approximate dynamic programming methods to optimize the distribution operations of a company manufacturing a certain product at multiple production plants and shipping it to different customer locations for sale. We begin by formulating the problem as a dynamic program. Our first approximate dynamic programming method uses a linear approximation of the value function and computes the parameters of this approximation by using the linear programming representation of the dynamic program. Our second method relaxes the constraints that link the decisions for different production plants. Consequently, the dynamic program decomposes by the production plants. Computational experiments show that the proposed methods are computationally attractive, and in particular, the second method performs significantly better than standard benchmarks. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
134.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
135.
We consider a two‐stage supply chain, in which multi‐items are shipped from a manufacturing facility or a central warehouse to a downstream retailer that faces deterministic external demand for each of the items over a finite planning horizon. The items are shipped through identical capacitated vehicles, each incurring a fixed cost per trip. In addition, there exist item‐dependent variable shipping costs and inventory holding costs at the retailer for items stored at the end of the period; these costs are constant over time. The sum of all costs must be minimized while satisfying the external demand without backlogging. In this paper we develop a search algorithm to solve the problem optimally. Our search algorithm, although exponential in the worst case, is very efficient empirically due to new properties of the optimal solution that we found, which allow us to restrict the number of solutions examined. Second, we perform a computational study that compares the empirical running time of our search methods to other available exact solution methods to the problem. Finally, we characterize the conditions under which each of the solution methods is likely to be faster than the others and suggest efficient heuristic solutions that we recommend using when the problem is large in all dimensions. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   
136.
In this study, we propose a new parsimonious policy for the stochastic joint replenishment problem in a single‐location, N‐item setting. The replenishment decisions are based on both group reorder point‐group order quantity and the time since the last decision epoch. We derive the expressions for the key operating characteristics of the inventory system for both unit and compound Poisson demands. In a comprehensive numerical study, we compare the performance of the proposed policy with that of existing ones over a standard test bed. Our numerical results indicate that the proposed policy dominates the existing ones in 100 of 139 instances with comparably significant savings for unit demands. With batch demands, the savings increase as the stochasticity of demand size gets larger. We also observe that it performs well in environments with low demand diversity across items. The inventory system herein also models a two‐echelon setting with a single item, multiple retailers, and cross docking at the upper echelon. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
137.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   
138.
We study a multi‐item capacitated lot‐sizing problem with setup times and pricing (CLSTP) over a finite and discrete planning horizon. In this class of problems, the demand for each independent item in each time period is affected by pricing decisions. The corresponding demands are then satisfied through production in a single capacitated facility or from inventory, and the goal is to set prices and determine a production plan that maximizes total profit. In contrast with many traditional lot‐sizing problems with fixed demands, we cannot, without loss of generality, restrict ourselves to instances without initial inventories, which greatly complicates the analysis of the CLSTP. We develop two alternative Dantzig–Wolfe decomposition formulations of the problem, and propose to solve their relaxations using column generation and the overall problem using branch‐and‐price. The associated pricing problem is studied under both dynamic and static pricing strategies. Through a computational study, we analyze both the efficacy of our algorithms and the benefits of allowing item prices to vary over time. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
139.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
140.
詹森(Jensen)不等式是解决不等式问题的一个重要方法,也是发现数学问题的重要手段。运用詹森不等式的关键是通过观察所给代数式的函数特征,构造一个凹或凸的函数,以利解题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号