首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   15篇
  国内免费   2篇
  2020年   7篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   9篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
51.
Recent supply‐chain models that study competition among capacity‐constrained producers omit the possibility of producers strategically setting wholesale prices to create uncertainty with regards to (i.e., to obfuscate) their production capacities. To shed some light on this possibility, we study strategic obfuscation in a supply‐chain model comprised of two competing producers and a retailer, where one of the producers faces a privately‐known capacity constraint. We show that capacity obfuscation can strictly increase the obfuscating producer's profit, therefore, presenting a clear incentive for such practices. Moreover, we identify conditions under which both producers' profits increase. In effect, obfuscation enables producers to tacitly collude and charge higher wholesale prices by moderating competition between producers. The retailer, in contrast, suffers a loss in profit, raises retail prices, while overall channel profits decrease. We show that the extent of capacity obfuscation is limited by its cost and by a strategic retailer's incentive to facilitate a deterrence. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 244–267, 2014  相似文献   
52.
随着"网络中心战"理念的提出,网络在未来战争中的作用日益突出。在现代战争信息激增的情况下,网络拥塞将成为"网络中心战"研究的课题。在研究目前网络拥塞控制的基础上,提出了一种网络拥塞、混沌控制的思想及具体实施技术,为网络拥塞控制的研究提供了一种思路。  相似文献   
53.
We consider a pricing problem in directed, uncapacitated networks. Tariffs must be defined by an operator, the leader, for a subset of m arcs, the tariff arcs. Costs of all other arcs in the network are assumed to be given. There are n clients, the followers, and after the tariffs have been determined, the clients route their demands independent of each other on paths with minimal total cost. The problem is to find tariffs that maximize the operator's revenue. Motivated by applications in telecommunication networks, we consider a restricted version of this problem, assuming that each client utilizes at most one of the operator's tariff arcs. The problem is equivalent to pricing bridges that clients can use in order to cross a river. We prove that this problem is APX‐hard. Moreover, we analyze the effect of uniform pricing, proving that it yields both an m approximation and a (1 + lnD)‐approximation. Here, D is upper bounded by the total demand of all clients. In addition, we consider the problem under the additional restriction that the operator must not reject any of the clients. We prove that this problem does not admit approximation algorithms with any reasonable performance guarantee, unless P = NP, and we prove the existence of an n‐approximation algorithm. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
54.
In this paper, we present a continuous time optimal control model for studying a dynamic pricing and inventory control problem for a make‐to‐stock manufacturing system. We consider a multiproduct capacitated, dynamic setting. We introduce a demand‐based model where the demand is a linear function of the price, the inventory cost is linear, the production cost is an increasing strictly convex function of the production rate, and all coefficients are time‐dependent. A key part of the model is that no backorders are allowed. We introduce and study an algorithm that computes the optimal production and pricing policy as a function of the time on a finite time horizon, and discuss some insights. Our results illustrate the role of capacity and the effects of the dynamic nature of demand in the model. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
55.
Consider a set of product variants that are differentiated by some secondary attributes such as flavor, color, or size. The retailer's problem is to jointly determine the set of variants to include in her product line (“assortment”), together with their prices and inventory levels, so as to maximize her expected profit. We model the consumer choice process using a multinomial logit choice model and consider a newsvendor type inventory setting. We derive the structure of the optimal assortment for some important special cases, including the case of horizontally differentiated items, and propose a dominance relationship for the general case that simplifies the search for an optimal assortment. We also discuss structural properties of the optimal prices. Finally, motivated by our analytical results, we propose a heuristic solution procedure, which is shown to be quite effective through a numerical study. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
56.
Trade-in programs have been widely adopted to enhance repeat purchase from replacement customers. Considering that a market consists of replacement and new segments, we study the joint and dynamic decisions on the selling price of new product (hereafter, “selling price”) and the trade-in price involved in the program. By adopting a vertical product differentiation choice model, we investigate two scenarios in this paper. In the base model, the manufacturer has sufficiently large production capacity to fulfill the customer demand. We characterize the structural properties of the joint pricing decisions and compare them with the optimal pricing policy under regular selling. We further propose a semi-dynamic trade-in program, under which the new product is sold at a fixed price and the trade-in price can be adjusted dynamically. Numerical experiments are conducted to evaluate the performance of the dynamic and semi-dynamic trade-in programs. In an extended model, we consider the scenario in which the manufacturer stocks a batch of new products in the beginning of the selling horizon and the inventory cannot be replenished. Following a revenue management framework, we characterize the structural properties with respect to time period and inventory level of new products.  相似文献   
57.
Spatial pricing means a retailer price discriminates its customers based on their geographic locations. In this article, we study how an online retailer should jointly allocate multiple products and facilitate spatial price discrimination to maximize profits. When deciding between a centralized product allocation ((i.e., different products are allocated to the same fulfillment center) and decentralized product allocation (ie, different products are allocated to different fulfillment centers), the retailer faces the tradeoff between shipment pooling (ie, shipping multiple products in one package), and demand localization (ie, stocking products to satisfy local demand) based on its understanding of customers' product valuations. In our basic model, we consider two widely used spatial pricing policies: free on board (FOB) pricing that charges each customer the exact amount of shipping cost, and uniform delivered (UD) pricing that provides free shipping. We propose a stylized model and find that centralized product allocation is preferred when demand localization effect is relatively low or shipment pooling benefit is relatively high under both spatial pricing policies. Moreover, centralized product allocation is more preferred under the FOB pricing which encourages the purchase of virtual bundles of multiple products. Furthermore, we respectively extend the UD and FOB pricing policies to flat rate shipping (ie, the firm charges a constant shipping fee for each purchase), and linear rate shipping (ie, the firm sets the shipping fee as a fixed proportion of firm's actual fulfillment costs). While similar observations from the basic model still hold, we find the firm can improve its profit by sharing the fulfillment cost with its customers via the flat rate or linear rate shipping fee structure.  相似文献   
58.
Emerging sharing modes, like the consumer-to-consumer (C2C) sharing of Uber and the business-to-consumer (B2C) sharing of GoFun, have considerably affected the retailing markets of traditional manufacturers, who are motivated to consider product sharing when making pricing and capacity decisions, particularly electric car manufacturers with limited capacity. In this paper, we examine the equilibrium pricing for a capacity-constrained manufacturer under various sharing modes and further analyze the impact of capacity constraint on the manufacturer's sharing mode selection as well as equilibrium outcomes. We find that manufacturers with low-cost products prefer B2C sharing while those with high-cost products prefer C2C sharing except when the sharing price is moderate. However, limited capacity motivates manufacturers to enter into the B2C sharing under a relatively low sharing price, and raise the total usage level by sharing high-cost products. We also show that the equilibrium capacity allocated to the sharing market with low-cost products first increases and then decreases. Finally, we find that sharing low-cost products with a high limited capacity leads to a lower retail price under B2C sharing, which creates a win-win situation for both the manufacturer and consumers. However, sharing high-cost products with a low limited capacity creates a win-lose situation for them.  相似文献   
59.
Ride-hailing platforms such as Uber, Lyft, and DiDi have achieved explosive growth and reshaped urban transportation. The theory and technologies behind these platforms have become one of the most active research topics in the fields of economics, operations research, computer science, and transportation engineering. In particular, advanced matching and dynamic pricing (DP) algorithms—the two key levers in ride-hailing—have received tremendous attention from the research community and are continuously being designed and implemented at industrial scales by ride-hailing platforms. We provide a review of matching and DP techniques in ride-hailing, and show that they are critical for providing an experience with low waiting time for both riders and drivers. Then we link the two levers together by studying a pool-matching mechanism called dynamic waiting (DW) that varies rider waiting and walking before dispatch, which is inspired by a recent carpooling product Express Pool from Uber. We show using data from Uber that by jointly optimizing DP and DW, price variability can be mitigated, while increasing capacity utilization, trip throughput, and welfare. We also highlight several key practical challenges and directions of future research from a practitioner's perspective.  相似文献   
60.
In many applications, managers face the problem of replenishing and selling products during a finite time horizon. We investigate the problem of making dynamic and joint decisions on product replenishment and selling in order to improve profit. We consider a backlog scenario in which penalty cost (resulting from fulfillment delay) and accommodation cost (resulting from shortage at the end of the selling horizon) are incurred. Based on continuous‐time and discrete‐state dynamic programming, we study the optimal joint decisions and characterize their structural properties. We establish an upper bound for the optimal expected profit and develop a fluid policy by resorting to the deterministic version of the problem (ie, the fluid problem). The fluid policy is shown to be asymptotically optimal for the original stochastic problem when the problem size is sufficiently large. The static nature of the fluid policy and its lack of flexibility in matching supply with demand motivate us to develop a “target‐inventory” heuristic, which is shown, numerically, to be a significant improvement over the fluid policy. Scenarios with discrete feasible sets and lost‐sales are also discussed in this article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号