首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   102篇
  国内免费   18篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   5篇
  2018年   1篇
  2017年   14篇
  2016年   17篇
  2015年   16篇
  2014年   21篇
  2013年   16篇
  2012年   15篇
  2011年   11篇
  2010年   10篇
  2009年   25篇
  2008年   18篇
  2007年   20篇
  2006年   24篇
  2005年   13篇
  2004年   21篇
  2003年   8篇
  2002年   8篇
  2001年   10篇
  2000年   9篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   12篇
  1989年   4篇
  1988年   1篇
排序方式: 共有360条查询结果,搜索用时 15 毫秒
201.
Hungary, a former communist state, adapted a Western-style defense planning system during the 1990s and 2000s. Although on the surface the elements of this planning system were similar to the planning programming budgeting system (PPBS) developed by the US Department of Defense, strategic guidance for defense planning has not been properly developed until recently. Thus, albeit PPBS-based defense plans were developed in the Hungarian Ministry of Defense (Hungarian MoD) regularly, they lacked both an expression of clear priorities and strategic focus. This article delineates the evolution of strategic guidance in the Hungarian MoD concentrating on current developments, and introduces the newly elaborated analytical concepts and tools, which helped to create needed strategic guidance in Hungary.  相似文献   
202.
常规Capon波束形成器性能对模型误差或失配非常敏感,尤其是当期望信号包含在训练数据中,导向矢量失配将引起性能急剧下降。为解决这一问题,提出了一种采用干扰噪声协方差矩阵和导向矢量联合估计的稳健波束形成算法。该方法通过对Capon空间谱在非目标信号的方位区域内的积分,实现对干扰噪声协方差矩阵的估计,解决数据协方差矩阵包含有目标信号时引起信号自相消问题;其次为了克服导向矢量失配的影响,通过最大化输出功率,并增加二次型约束防止估计的导向矢量接近于干扰导向矢量,实现对导向矢量的估计。仿真实验表明:该算法能获得近似最优的输出信干噪比,与现有算法相比稳健性更强。  相似文献   
203.
针对我军配套装备器材订货的特点,在考虑库存容量空间限制与整套装备的最低期望满足率两种约束条件下,建立了配套装备器材的库存与运输优化模型,并应用改进的动态规划方法进行求解。结果表明:应用库存与运输的优化模型,在保障军事目标实现的前提下,有效地降低了物流成本。  相似文献   
204.
在流编程模型下建立了一个新的存储一致性模型--流一致性模型,它比传统的释放一致性模型更加松弛.讨论了流一致性模型对程序设计和系统设计的要求,给出了一个正确的系统实现,并且指出流一致性模型的编程和实现并不比现有的一致性模型复杂.  相似文献   
205.
We consider a supply chain in which a retailer faces a stochastic demand, incurs backorder and inventory holding costs and uses a periodic review system to place orders from a manufacturer. The manufacturer must fill the entire order. The manufacturer incurs costs of overtime and undertime if the order deviates from the planned production capacity. We determine the optimal capacity for the manufacturer in case there is no coordination with the retailer as well as in case there is full coordination with the retailer. When there is no coordination the optimal capacity for the manufacturer is found by solving a newsvendor problem. When there is coordination, we present a dynamic programming formulation and establish that the optimal ordering policy for the retailer is characterized by two parameters. The optimal coordinated capacity for the manufacturer can then be obtained by solving a nonlinear programming problem. We present an efficient exact algorithm and a heuristic algorithm for computing the manufacturer's capacity. We discuss the impact of coordination on the supply chain cost as well as on the manufacturer's capacity. We also identify the situations in which coordination is most beneficial. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
206.
设 (E ,d ,W )是完备的凸度量空间 ,T :E→E是广义拟—压缩映象 ,{xn}为T的带误差项的Ishikawa迭代序列。则 {xn}收敛于T的唯一的不动点 p∈E。  相似文献   
207.
In this study, we illustrate a real‐time approximate dynamic programming (RTADP) method for solving multistage capacity decision problems in a stochastic manufacturing environment, by using an exemplary three‐stage manufacturing system with recycle. The system is a moderate size queuing network, which experiences stochastic variations in demand and product yield. The dynamic capacity decision problem is formulated as a Markov decision process (MDP). The proposed RTADP method starts with a set of heuristics and learns a superior quality solution by interacting with the stochastic system via simulation. The curse‐of‐dimensionality associated with DP methods is alleviated by the adoption of several notions including “evolving set of relevant states,” for which the value function table is built and updated, “adaptive action set” for keeping track of attractive action candidates, and “nonparametric k nearest neighbor averager” for value function approximation. The performance of the learned solution is evaluated against (1) an “ideal” solution derived using a mixed integer programming (MIP) formulation, which assumes full knowledge of future realized values of the stochastic variables (2) a myopic heuristic solution, and (3) a sample path based rolling horizon MIP solution. The policy learned through the RTADP method turned out to be superior to polices of 2 and 3. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   
208.
针对电子侦察卫星的使用约束,及不同任务的调度需求,建立了电子侦察卫星联合侦察的多目标混合整数规划模型.利用进化算法的全局搜索能力和变邻域搜索的局部优化能力,提出了一种多目标进化算法和变邻域搜索相结合两阶段混合调度算法MOEA VNS.针对问题多时间窗组合优化特点,设计了进化算子与邻域移动算子,在确保解多样性的同时使算法...  相似文献   
209.
This article is a sequel to a recent article that appeared in this journal, “An extensible modeling framework for dynamic reassignment and rerouting in cooperative airborne operations” [ 17 ], in which an integer programming formulation to the problem of rescheduling in‐flight assets due to changes in battlespace conditions was presented. The purpose of this article is to present an improved branch‐and‐bound procedure to solve the dynamic resource management problem in a timely fashion, as in‐flight assets must be quickly re‐tasked to respond to the changing environment. To facilitate the rapid generation of attractive updated mission plans, this procedure uses a technique for reducing the solution space, supports branching on multiple decision variables simultaneously, incorporates additional valid cuts to strengthen the minimal network constraints of the original mathematical model, and includes improved objective function bounds. An extensive numerical analysis indicates that the proposed approach significantly outperforms traditional branch‐and‐bound methodologies and is capable of providing improved feasible solutions in a limited time. Although inspired by the dynamic resource management problem in particular, this approach promises to be an effective tool for solving other general types of vehicle routing problems. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
210.
This article presents a flexible days‐on and days‐off scheduling problem and develops an exact branch and price (B&P) algorithm to find solutions. The main objective is to minimize the size of the total workforce required to cover time‐varying demand over a planning horizon that may extend up to 12 weeks. A new aspect of the problem is the general restriction that the number of consecutive days on and the number of consecutive days off must each fall within a predefined range. Moreover, the total assignment of working days in the planning horizon cannot exceed some maximum value. In the B&P framework, the master problem is stated as a set covering‐type problem whose columns are generated iteratively by solving one of three different subproblems. The first is an implicit model, the second is a resource constrained shortest path problem, and the third is a dynamic program. Computational experiments using both real‐word and randomly generated data show that workforce reductions up to 66% are possible with highly flexible days‐on and days‐off patterns. When evaluating the performance of the three subproblems, it was found that each yielded equivalent solutions but the dynamic program proved to be significantly more efficient. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 678–701, 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号