首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   21篇
  国内免费   3篇
  674篇
  2025年   6篇
  2024年   4篇
  2023年   14篇
  2022年   9篇
  2021年   6篇
  2020年   18篇
  2019年   15篇
  2018年   14篇
  2017年   39篇
  2016年   36篇
  2015年   31篇
  2014年   35篇
  2013年   39篇
  2012年   37篇
  2011年   35篇
  2010年   27篇
  2009年   35篇
  2008年   30篇
  2007年   26篇
  2006年   41篇
  2005年   29篇
  2004年   31篇
  2003年   17篇
  2002年   14篇
  2001年   17篇
  2000年   11篇
  1999年   12篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
排序方式: 共有674条查询结果,搜索用时 0 毫秒
571.
    
This article studies the problem of designing Bayesian sampling plans (BSP) with interval censored samples. First, an algorithm for deriving the conventional BSP is proposed. The BSP is shown to possess some monotonicity. Based on the BSP and using the property of monotonicity, a new sampling plan modified by the curtailment procedure is proposed. The resulting curtailed Bayesian sampling plan (CBSP) can reduce the duration time of life test experiment, and it is optimal in the sense that its associated Bayes risk is smaller than the Bayes risk of the BSP if the cost of the duration time of life test experiment is considered. A numerical example to compute the Bayes risks of BSP and CBSP and related quantities is given. Also, a Monte Carlo simulation study is performed to illustrate the performance of the CBSP compared with the BSP. The simulation results demonstrate that our proposed CBSP has better performance because it has smaller risk. The CBSP is recommended. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 604–616, 2015  相似文献   
572.
    
This article generalizes the dynamic and stochastic knapsack problem by allowing the decision‐maker to postpone the accept/reject decision for an item and maintain a queue of waiting items to be considered later. Postponed decisions are penalized with delay costs, while idle capacity incurs a holding cost. This generalization addresses applications where requests of scarce resources can be delayed, for example, dispatching in logistics and allocation of funding to investments. We model the problem as a Markov decision process and analyze it through dynamic programming. We show that the optimal policy with homogeneous‐sized items possesses a bithreshold structure, despite the high dimensionality of the decision space. Finally, the value (or price) of postponement is illustrated through numerical examples. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 267–292, 2015  相似文献   
573.
    
In urban rail transit systems of large cities, the headway and following distance of successive trains have been compressed as much as possible to enhance the corridor capacity to satisfy extremely high passenger demand during peak hours. To prevent train collisions and ensure the safety of trains, a safe following distance of trains must be maintained. However, this requirement is subject to a series of complex factors, such as the uncertain train braking performance, train communication delay, and driver reaction time. In this paper, we propose a unified mathematical framework to analyze the safety‐oriented reliability of metro train timetables with different corridor capacities, that is, the train traffic density, and determine the most reliable train timetable for metro lines in an uncertain environment. By employing a space‐time network representation in the formulations, the reliability‐based train timetabling problem is formulated as a nonlinear stochastic programming model, in which we use 0‐1 variables to denote the time‐dependent velocity and position of all involved trains. Several reformulation techniques are developed to obtain an equivalent mixed integer programming model with quadratic constraints (MIQCP) that can be solved to optimality by some commercial solvers. To improve the computational efficiency of the MIQCP model, we develop a dual decomposition solution framework that decomposes the primal problem into several sets of subproblems by dualizing the coupling constraints across different samples. An exact dynamic programming combined with search space reduction strategies is also developed to solve the exact optimal solutions of these subproblems. Two sets of numerical experiments, which involve a relatively small‐scale case and a real‐world instance based on the operation data of the Beijing subway Changping Line are implemented to verify the effectiveness of the proposed approaches.  相似文献   
574.
    
We apply dynamic proximity calculations (density and clustering) from dynamic computational geometry to a military application. The derived proximity information serves as an abstract view of a current situation in the battlefield that can help a military commander achieve situation awareness. We employ Delaunay triangulation as a computational tool in our framework, and study its dynamic update in depth. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
575.
    
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
576.
    
Passenger prescreening is a critical component of aviation security systems. This paper introduces the Multilevel Allocation Problem (MAP), which models the screening of passengers and baggage in a multilevel aviation security system. A passenger is screened by one of several classes, each of which corresponds to a set of procedures using security screening devices, where passengers are differentiated by their perceived risk levels. Each class is defined in terms of its fixed cost (the overhead costs), its marginal cost (the additional cost to screen a passenger), and its security level. The objective of MAP is to assign each passenger to a class such that the total security is maximized subject to passenger assignments and budget constraints. This paper shows that MAP is NP‐hard and introduces a Greedy heuristic that obtains approximate solutions to MAP that use no more than two classes. Examples are constructed using data extracted from the Official Airline Guide. Analysis of the examples suggests that fewer security classes for passenger screening may be more effective and that using passenger risk information can lead to more effective security screening strategies. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
577.
    
We propose two approximate dynamic programming methods to optimize the distribution operations of a company manufacturing a certain product at multiple production plants and shipping it to different customer locations for sale. We begin by formulating the problem as a dynamic program. Our first approximate dynamic programming method uses a linear approximation of the value function and computes the parameters of this approximation by using the linear programming representation of the dynamic program. Our second method relaxes the constraints that link the decisions for different production plants. Consequently, the dynamic program decomposes by the production plants. Computational experiments show that the proposed methods are computationally attractive, and in particular, the second method performs significantly better than standard benchmarks. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
578.
多因子动态加权威胁估计方法   总被引:8,自引:2,他引:6  
在分析了以往威胁估计方法不足的基础上,提出了多因子动态加权威胁估计方法,该方法中给出了诸因子新的有作战背景的威胁隶属度函数,并运用层次分析法(AHP)计算出权系数,而且随着作战环境的变化可动态调整之。  相似文献   
579.
采用 IBM- PC机为主机 ,对弹丸动不平衡量 (m1 ,m2 )及相位角α进行自动测试并做相应的数据处理。设计了弹丸左、右两标定面的平面分离电路、A/D转换电路等。  相似文献   
580.
火控系统动态仿真试验平台是基于MATLAB/SIMULINK研制的仿真工具。着重介绍了它的功用和软件的树型结构,并以某型雷达方位角天控系统为例,介绍了应用试验平台进行动态仿真和性能分析时的基本步骤。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号