首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   5篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   6篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
排序方式: 共有46条查询结果,搜索用时 171 毫秒
11.
In this study, the buckling analysis of a Graphene oxide powder reinforced (GOPR) nanocomposite shell is investigated. The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanical scheme. Three distribution types of GOPs are considered, namely uniform, X and O. Also, a first-order shear deformation shell theory is incorporated with the principle of virtual work to derive the governing differential equations of the problem. The governing equations are solved via Galerkin's method, which is a powerful analytical method for static and dynamic problems. Comparison study is performed to verify the present formulation with those of previous data. New results for the buckling load of GOPR nanocomposite shells are presented regarding for different values of circumfer-ential wave number. Besides, the influences of weight fraction of nanofillers, length and radius to thickness ratios and elastic foundation on the critical buckling loads of GOP-reinforced nanocomposite shells are explored.  相似文献   
12.
提高步进电机步距精度的研究   总被引:9,自引:0,他引:9       下载免费PDF全文
就步进电机细分可以提高步距精度的问题从理论上进行了分析和研究,并用传递函数的方法研究系统的动态响应,最后给出了不同细分数的步距角的均匀性的实验数据。  相似文献   
13.
《防务技术》2019,15(3):353-362
AA5059 is one of the high strength armor grade aluminium alloy that finds its applications in the military vehicles due to the higher resistance against the armor piercing (AP) threats. This study aimed at finding the best suitable process among the fusion welding processes such as gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) by evaluating the tensile properties of AA5059 aluminium alloy joints. The fracture path was identified by mapping the low hardness distribution profile (LHDP) across the weld cross section under tensile loading. Optical and scanning electron microscopies were used to characterize the microstructural features of the welded joints at various zones. It is evident from the results that GTAW joints showed superior tensile properties compared to GMAW joints and this is primarily owing to the presence of finer grains in the weld metal zone (WMZ) and narrow heat-affected zone (HAZ). The lower heat input associated with the GTAW process effectively reduced the size of the WMZ and HAZ compared to GMAW process. Lower heat input of GTAW process results in faster cooling rate which hinders the grain growth and reduces the evaporation of magnesium in weld metal compared to GMAW joints. The fracture surface of GTAW joint consists of more dimples than GMAW joints which is an indication that the GTAW joint possess improved ductility than GMAW joint.  相似文献   
14.
《防务技术》2020,16(1):217-224
Experiments on shaped charge penetration into high and ultrahigh strength steel-fiber reactive powder concrete (RPC) targets were performed in this paper. Results show that the variation of penetration depth and crater diameter with concrete strength is different from that of shaped charge penetration into normal strength concrete (NSC). The crater diameter of RPC is smaller than that of NSC penetrated by the shaped charge. The jet particles are strongly disturbed and hardly reach the crater bottom because they pass through the narrow channel formed by jet penetration into the RPC. The effects of radial drift velocity and gap effects of jet particles for a shaped charge penetration into RPC target are discussed. Moreover, a theoretical model is presented to describe the penetration of shaped charge into RPC target. As the concrete strength increases, the penetration resistance increases and the entrance crater diameter decreases. Given the drift velocity and narrow crater channel, the low-velocity jet particles can hardly reach the crater bottom to increase the penetration depth. Moreover, the narrow channel has a stronger interference to the jet particles with increasing concrete strength; hence, the gap effects must be considered. The drift velocity and gap effects, which are the same as penetration resistance, also have significant effects during the process of shaped charge penetration into ultrahigh-strength concrete. The crater profiles are calculated through a theoretical model, and the results are in good agreement with the experiments.  相似文献   
15.
雾化空气法生产微细铝粉已有近 70年历史 ,但其生产过程极易发生爆炸 ,氮气由于其良好的防火性能 ,在生产中代替空气将会极大降低爆炸的可能性。  相似文献   
16.
活性粉末混凝土200(RPC200)的配制试验研究   总被引:1,自引:0,他引:1  
进行了活性粉末混凝土(RPC)的配制试验,通过5批试件分别探讨砂灰比、石英粉、硅灰、水胶比和钢纤维等因素单值变化时对RPC流动度以及抗折强度、抗压强度的影响.研究表明:在常规制作工艺条件下,配制出抗压强度和抗折强度分别为145.6 MPa和26.68MPa的无纤维RPC;当钢纤维含量为6%时,RPC的抗压强度和抗折强度分别达到了201.3MPa和73.67 MPa.  相似文献   
17.
《防务技术》2022,18(11):1979-1999
A quasi-isentropic study on the process of driving a cylinder with aluminized explosives was carried out to examine the influence of the aluminum (Al) reaction rate on cylinder expansion and the physical parameters of the detonation products. Based on the proposed quasi-isentropic hypothesis and relevant isentropic theories, the characteristic lines of aluminized explosives driving a cylinder were analyzed, and a quasi-isentropic model was established. This model includes the variation of the cylinder wall velocity and the physical parameters of the detonation products with the Al reaction degree. Using previously reported experimental results, the quasi-isentropic model was verified to be applicative and accurate. This model was used to calculate the physical parameters for cylinder experiments with aluminized cyclotrimethylenetrinitramine explosives with 15.0 % and 30.0 % Al content. The results show that this quasi-isentropic model can be used not only to calculate the cylinder expansion rule or Al reaction degree, but also to calculate the physical parameters of the detonation products in the process of cylinder expansion. For explosives with 15.0 % and 30.0 % Al, 24.3 % and 18.5 % of the Al was found to have reacted at 33.9 μs and 34.0 μs, respectively. The difference in Al content results in different reaction intensity, occurrence time, and duration of two forms of reaction (diffusion and kinetic) between the Al powder and the detonation products; the post-detonation burning reaction between the Al powder and the detonation products prolongs the positive pressure action time, resulting in a continuous rise in temperature after detonation.  相似文献   
18.
发射装药号是影响火炮身管寿命的重要因素,为自动识别火炮发射药的装药号,避免人工记录失误和完善火炮射弹履历,分析了装药号自动识别原理,运用火炮动力学分析理论和ADAMS虚拟样机技术,建立火炮发射动力学虚拟样机.通过仿真试验获取样本数据,应用BP神经网络进行学习和训练,从而建立装药号和测试数据之间的非线性映射关系,实现对火炮发射装药号的精确预测.  相似文献   
19.
In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate. Metal powders' explosive properties and reaction mechanisms in FAE were studied by high-speed video, pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700 ℃, which was higher than that of the pure liquid fuels. After replacing 30%of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.  相似文献   
20.
以三维碳纤维织物和廉价的硅树脂为原料,采用先驱体转化工艺制备3D G/Si-O-C材料,考察了浸渍液中添加SiC填料对材料微观结构、力学性能和抗氧化性能影响.结果表明:添加适量的SiC填料有助于减少基体孔隙,改善界面结合,从而提高材料的力学性能;而SiC含量过高时,容易在材料内部形成闭孔,从而导致材料力学性能下降.当SiC微粉含量为18.2%时,材料具有最好的力学性能,弯曲强度和断裂韧度分别为421.3MPa和13.0 MPa·m1/2;而材料的抗氧化性能随着SiC微粉含量的增加而增加,当SiC微粉含量为25.0%时,材料的弯曲强度保留率最高,达到了89.5%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号