全文获取类型
收费全文 | 325篇 |
免费 | 14篇 |
国内免费 | 3篇 |
专业分类
342篇 |
出版年
2025年 | 3篇 |
2024年 | 5篇 |
2023年 | 7篇 |
2022年 | 5篇 |
2020年 | 7篇 |
2019年 | 3篇 |
2018年 | 4篇 |
2017年 | 9篇 |
2016年 | 13篇 |
2015年 | 10篇 |
2014年 | 17篇 |
2013年 | 14篇 |
2012年 | 29篇 |
2011年 | 17篇 |
2010年 | 13篇 |
2009年 | 16篇 |
2008年 | 18篇 |
2007年 | 30篇 |
2006年 | 22篇 |
2005年 | 21篇 |
2004年 | 20篇 |
2003年 | 12篇 |
2002年 | 7篇 |
2001年 | 4篇 |
2000年 | 7篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 4篇 |
1996年 | 7篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 4篇 |
1990年 | 2篇 |
1989年 | 1篇 |
排序方式: 共有342条查询结果,搜索用时 0 毫秒
71.
针对具有自主接近能力的航天器开展了反交会规避机动方法研究。首先,建立了仅测角相对导航模型,对完全不可观测机动进行定义,基于空间几何关系推导并证明了完全不可观测机动是不存在的。随后,以施加规避机动后追踪器对逃逸器的测量值与未机动时的差异为优化目标,利用矢量乘积原理设计目标函数,建立优化模型并对变量约束进行分析,随后采用遗传算法对最优规避机动方向进行优化。给出的仿真算例结果表明,提出的规避机动方向计算方法能够使目标函数值达到最小,从而提升追踪器对逃逸器的状态估计难度,降低其估计精度。本文方法为规避机动问题研究提供了一种新的视角,可为以主动接近航天器这类新对象进行的规避研究提供有益借鉴。 相似文献
72.
73.
In this paper we consider the problem of minimizing the costs of outsourcing warranty repairs when failed items are dynamically routed to one of several service vendors. In our model, the manufacturer incurs a repair cost each time an item needs repair and also incurs a goodwill cost while an item is awaiting and undergoing repair. For a large manufacturer with annual warranty costs in the tens of millions of dollars, even a small relative cost reduction from the use of dynamic (rather than static) allocation may be practically significant. However, due to the size of the state space, the resulting dynamic programming problem is not exactly solvable in practice. Furthermore, standard routing heuristics, such as join‐the‐shortest‐queue, are simply not good enough to identify potential cost savings of any significance. We use two different approaches to develop effective, simply structured index policies for the dynamic allocation problem. The first uses dynamic programming policy improvement while the second deploys Whittle's proposal for restless bandits. The closed form indices concerned are new and the policies sufficiently close to optimal to provide cost savings over static allocation. All results of this paper are demonstrated using a simulation study. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005 相似文献
74.
Given a number of patrollers that are required to detect an intruder in a channel, the channel patrol problem consists of determining the periodic trajectories that the patrollers must trace out so as to maximized the probability of detection of the intruder. We formulate this problem as an optimal control problem. We assume that the patrollers' sensors are imperfect and that their motions are subject to turn‐rate constraints, and that the intruder travels straight down a channel with constant speed. Using discretization of time and space, we approximate the optimal control problem with a large‐scale nonlinear programming problem which we solve to obtain an approximately stationary solution and a corresponding optimized trajectory for each patroller. In numerical tests for one, two, and three underwater patrollers, an underwater intruder, different trajectory constraints, several intruder speeds and other specific parameter choices, we obtain new insight—not easily obtained using simply geometric calculations—into efficient patrol trajectory design under certain conditions for multiple patrollers in a narrow channel where interaction between the patrollers is unavoidable due to their limited turn rate.© 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011 相似文献
75.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011 相似文献
76.
The optimality of the One‐Bug‐Look‐Ahead (OLA) software release policy proposed by Morali and Soyer ( 15 ) is re‐examined in this paper. A counterexample is constructed to show that OLA is not optimal in general. The optimal stopping approach is then called upon to prove that OLA possesses weaker sense of optimality under conditional monotonicity and the strong sense of optimality holds under a more restrictive sample‐wise monotonicity condition. The NTDS data are analyzed for illustration, and OLA is shown to be robust with respect to model parameters. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007. 相似文献
77.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we study burn‐in procedure for a system that is maintained under periodic inspection and perfect repair policy. Assuming that the underlying lifetime distribution of a system has an initially decreasing and/or eventually increasing failure rate function, we derive upper and lower bounds for the optimal burn‐in time, which maximizes the system availability. Furthermore, adopting an age replacement policy, we derive upper and lower bounds for the optimal age parameter of the replacement policy for each fixed burn‐in time and a uniform upper bound for the optimal burn‐in time given the age replacement policy. These results can be used to reduce the numerical work for determining both optimal burn‐in time and optimal replacement policy. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007 相似文献
78.
给出了纯方位系统在目标任意变速变向运动或不动情况下,目标定位与跟踪中的本载体确定性控制最优和次优轨线方程以及其最优轨线。这一结果是完全用解析方法得到的。 相似文献
79.
Donald D. Eisenstein 《海军后勤学研究》2008,55(4):350-362
Order picking accounts for most of the operating expense of a typical distribution center, and thus is often considered the most critical function of a supply chain. In discrete order picking a single worker walks to pick all the items necessary to fulfill a single customer order. Discrete order picking is common not only because of its simplicity and reliability, but also because of its ability to pick orders quickly upon receipt, and thus is commonly used by e‐commerce operations. There are two primary ways to reduce the cost (walking distance required) of the order picking system. First is through the use of technology—conveyor systems and/or the ability to transmit order information to pickers via mobile units. Second is through the design—where best to locate depots (where workers receive pick lists and deposit completed orders) and how best to lay out the product. We build a stochastic model to compare three configurations of different technology requirements: single‐depot, dual‐depot, and no‐depot. For each configuration we explore the optimal design. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008 相似文献
80.