首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   112篇
  国内免费   25篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   8篇
  2019年   10篇
  2018年   4篇
  2017年   15篇
  2016年   18篇
  2015年   17篇
  2014年   19篇
  2013年   15篇
  2012年   37篇
  2011年   39篇
  2010年   13篇
  2009年   30篇
  2008年   20篇
  2007年   19篇
  2006年   26篇
  2005年   25篇
  2004年   20篇
  2003年   11篇
  2002年   16篇
  2001年   17篇
  2000年   12篇
  1999年   12篇
  1998年   8篇
  1997年   7篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
排序方式: 共有453条查询结果,搜索用时 31 毫秒
231.
态势估计中统计时间推理在许多应用中非常重要。Kirilov的基于极大似然估计(MaximumLikelihoodEstimation,MLE)的推理方法将未知时间变量看作常数,忽略了它的先验信息,估计方差较大。针对这一问题,本文首先建立了已知时间信息和未知时间变量之间的关系模型,这一模型可用来解释Kirilov的方法;然后在这一模型下,将未知时间变量扩展为随机变量,采用基于最大后验概率估计(MaximumaPos-terioriEstimation,MAP)的方法进行统计时间推理。对两种推理算法的性能进行了分析和比较,发现在较宽的范围内,基于MAP的方法性能优于基于MLE的方法。  相似文献   
232.
针对目标随机机动、惯性延迟、参数变化等因素降低导弹末制导精度的问题,提出新型随机快速光滑二阶滑模控制方法。将目标机动简化为零均值高斯白噪声过程,制导系统成为带加性噪声随机不确定非线性系统。考虑到该系统不存在平衡点,提出有限时间二阶均方实用收敛概念,并基于此证明了所设计控制律的收敛特性。根据直接命中条件设计滑模面,得到随机快速光滑二阶滑模制导律。在尾追和迎头两种态势下,将该新型制导律与扩展比例导引、一般滑模制导律及确定性光滑二阶滑模制导律进行仿真比较,验证了该方法的正确性和有效性。  相似文献   
233.
The well‐known generalized assignment problem (GAP) involves the identification of a minimum‐cost assignment of tasks to agents when each agent is constrained by a resource in limited supply. The multi‐resource generalized assignment problem (MRGAP) is the generalization of the GAP in which there are a number of different potentially constraining resources associated with each agent. This paper explores heuristic procedures for the MRGAP. We first define a three‐phase heuristic which seeks to construct a feasible solution to MRGAP and then systematically attempts to improve the solution. We then propose a modification of the heuristic for the MRGAP defined previously by Gavish and Pirkul. The third procedure is a hybrid heuristic that combines the first two heuristics, thus capturing their relative strengths. We discuss extensive computational experience with the heuristics. The hybrid procedure is seen to be extremely effective in solving MRGAPs, generating feasible solutions to more than 99% of the test problems and consistently producing near‐optimal solutions. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 468–483, 2001  相似文献   
234.
This article addresses the inventory placement problem in a serial supply chain facing a stochastic demand for a single planning period. All customer demand is served from stage 1, where the product is stored in its final form. If the demand exceeds the supply at stage 1, then stage 1 is resupplied from stocks held at the upstream stages 2 through N, where the product may be stored in finished form or as raw materials or subassemblies. All stocking decisions are made before the demand occurs. The demand is nonnegative and continuous with a known probability distribution, and the purchasing, holding, shipping, processing, and shortage costs are proportional. There are no fixed costs. All unsatisfied demand is lost. The objective is to select the stock quantities that should be placed different stages so as to maximize the expected profit. Under reasonable cost assumptions, this leads to a convex constrained optimization problem. We characterize the properties of the optimal solution and propose an effective algorithm for its computation. For the case of normal demands, the calculations can be done on a spreadsheet. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:506–517, 2001  相似文献   
235.
Consider a binary, monotone system of n components. The assessment of the parameter vector, θ, of the joint distribution of the lifetimes of the components and hence of the reliability of the system is often difficult due to scarcity of data. It is therefore important to make use of all information in an efficient way. For instance, prior knowledge is often of importance and can indeed conveniently be incorporated by the Bayesian approach. It may also be important to continuously extract information from a system currently in operation. This may be useful both for decisions concerning the system in operation as well as for decisions improving the components or changing the design of similar new systems. As in Meilijson [12], life‐monitoring of some components and conditional life‐monitoring of some others is considered. In addition to data arising from this monitoring scheme, so‐called autopsy data are observed, if not censored. The probabilistic structure underlying this kind of data is described, and basic likelihood formulae are arrived at. A thorough discussion of an important aspect of this probabilistic structure, the inspection strategy, is given. Based on a version of this strategy a procedure for preventive system maintenance is developed and a detailed application to a network system presented. All the way a Bayesian approach to estimation of θ is applied. For the special case where components are conditionally independent given θ with exponentially distributed lifetimes it is shown that the weighted sum of products of generalized gamma distributions, as introduced in Gåsemyr and Natvig [7], is the conjugate prior for θ. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 551–577, 2001.  相似文献   
236.
We present a stochastic optimization model for planning capacity expansion under capacity deterioration and demand uncertainty. The paper focuses on the electric sector, although the methodology can be used in other applications. The goals of the model are deciding which energy types must be installed, and when. Another goal is providing an initial generation plan for short periods of the planning horizon that might be adequately modified in real time assuming penalties in the operation cost. Uncertainty is modeled under the assumption that the demand is a random vector. The cost of the risk associated with decisions that may need some tuning in the future is included in the objective function. The proposed scheme to solve the nonlinear stochastic optimization model is Generalized Benders' decomposition. We also exploit the Benders' subproblem structure to solve it efficiently. Computational results for moderate‐size problems are presented along with comparison to a general‐purpose nonlinear optimization package. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:662–683, 2001  相似文献   
237.
Various methods and criteria for comparing coherent systems are discussed. Theoretical results are derived for comparing systems of a given order when components are assumed to have independent and identically distributed lifetimes. All comparisons rely on the representation of a system's lifetime distribution as a function of the system's “signature,” that is, as a function of the vector p= (p1, … , pn), where pi is the probability that the system fails upon the occurrence of the ith component failure. Sufficient conditions are provided for the lifetime of one system to be larger than that of another system in three different senses: stochastic ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem for hazard rate ordering is established. In the final section, the notion of system signature is used to examine a recently published conjecture regarding componentwise and systemwise redundancy. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507–523, 1999  相似文献   
238.
This paper uses the holding time model (HTM) method to derive an approximate analytic formula for the calculation of the mean throughput of a K-station production line with no buffers between any two successive stations. Service times follow the two-stage Coxian (C2) distribution at all stations. The paper provides a formula that relates the third moment of the service completion (or virtual service) time with the respective parameters of the service time, the repair time and the time to breakdown (the latter is assumed to follow the exponential distribution). In this way, it concludes that under certain conditions the two-stage Coxian distribution can be used to approximate any general distribution matching the first three moments of the service completion time distribution. The mean holding times (consisting of the service and blocking periods) of all stations of the line are obtained in an analytical form. Numerical results are provided for the mean throughput of lines with up to 20 stations. These results are shown to have a good accuracy compared against results obtained from the Markovian state method (for short lines) and results from simulation (for longer lines). © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 669–685, 1998  相似文献   
239.
This article considers the problem of which component should be “bolstered” or “improved” in order to stochastically maximize the lifetime of a parallel system, series system, or in general, k-out-of-n system. Various ways of bolstering including active redundance, standby redundancy, and burn-in are studied. Also the method of reducing working temperature or stress level according to Arrhenius models is investigated. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 497–509, 1998  相似文献   
240.
We consider a stochastic counterpart of the well-known earliness-tardiness scheduling problem with a common due date, in which n stochastic jobs are to be processed on a single machine. The processing times of the jobs are independent and normally distributed random variables with known means and known variances that are proportional to the means. The due dates of the jobs are random variables following a common probability distribution. The objective is to minimize the expectation of a weighted combination of the earliness penalty, the tardiness penalty, and the flow-time penalty. One of our main results is that an optimal sequence for the problem must be V-shaped with respect to the mean processing times. Other characterizations of the optimal solution are also established. Two algorithms are proposed, which can generate optimal or near-optimal solutions in pseudopolynomial time. The proposed algorithms are also extended to problems where processing times do not satisfy the assumption in the model above, and are evaluated when processing times follow different probability distributions, including general normal (without the proportional relation between variances and means), uniform, Laplace, and exponential. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44, 531–557, 1997.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号