首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   43篇
  国内免费   6篇
  2024年   3篇
  2022年   5篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   7篇
  2016年   4篇
  2015年   2篇
  2014年   11篇
  2013年   11篇
  2012年   5篇
  2011年   16篇
  2010年   7篇
  2009年   11篇
  2008年   9篇
  2007年   11篇
  2006年   10篇
  2005年   6篇
  2004年   10篇
  2003年   7篇
  2002年   3篇
  2001年   8篇
  2000年   3篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
排序方式: 共有173条查询结果,搜索用时 31 毫秒
141.
为研究不同密度弹丸对武器装备的损伤,建立弹丸侵彻多层靶板的有限元模型,对不同密度弹丸侵彻多层靶板进行仿真试验。不同于传统的宏观破口尺寸损伤表征参数,引入等效应变及等效应力幅值来精确描述靶板损伤,并提出了一种基于多元统计分析对靶板损伤进行评估的方法。计算结果表明:利用该方法所得到的评估结果与理论分析结果完全一致。这说明基于多元统计分析的靶板损伤评估方法是切实可行的,可以进一步应用于装备损伤评估与易损性研究中。  相似文献   
142.
研究恒温和变温热源条件下具有等熵压缩、膨胀过程的闭式回热式布雷顿热泵循环有限时间热力学性能,导出循环供热率和供热系数与循环压比间的解析关系,由此可得最佳供热率、供热系数关系。分析中计入了工质与高、低温热源间换热器和回热器的热阻损失。  相似文献   
143.
针对正交异性材料的二维非线性热传导反问题,本文采用顺序函数法对表面热流辨识进行了研究。在求解反问题时用到有限体积法、牛顿-拉夫逊法并引入未来时间步长的概念。在每个时间步内,将待辨识热流视为非线性方程组的未知量,通过一个迭代过程进行求解。从文中的例子可以看出,真实热流和辨识热流结果相近,从而证明了本方法在辨识二维非线性热传导反问题时是准确、稳定、有效的。  相似文献   
144.
以斜侵彻过程中的终点弹道为研究对象,基于动态球形空腔膨胀理论给出的阻力函数理论公式和开坑阶段的表面层裂机理,建立了能够综合考虑弹头形状、开坑区深度的斜侵彻深度预测模型,并进一步推导了能够适用不同弹头形状的弹体过载时程曲线计算公式。预测模型得到的侵彻深度和过载与试验结果吻合较好。研究结果可为弹体与混凝土靶的斜侵彻弹道分析和弹丸头部设计提供一定帮助。  相似文献   
145.
基于动态球形空腔膨胀理论给出的阻力函数理论公式和开坑阶段的表面层裂机理,建立了能够综合考虑弹头形状、开坑区深度的斜侵彻深度预测模型,并进一步推导了能够适用不同弹头形状的弹体过载时程曲线计算公式。预测模型得到的侵彻深度和过载与试验结果吻合较好。研究结果可为弹体与混凝土靶的斜侵彻弹道分析和弹丸头部设计提供一定帮助。  相似文献   
146.
为研究球形头部弹丸高速侵彻运动靶板的侵彻规律,运用LS-DYNA动力分析软件仿真研究了不同条件下球形头部弹丸对靶板的正侵彻效应,获得了运动靶板厚度、材料和弹丸着速3种参数对侵彻过程中弹丸弹道偏移、翻转角度和剩余速度的响应规律。结果表明,随着着速的提高,弹丸翻转幅度和弹道偏移量逐渐减小;随着靶板厚度的增加,弹丸正向翻转角度和轴向剩余速度显著减小,而弹道偏移量增大;3种材料运动靶板中,4340钢靶对弹丸弹道偏移、翻转角度和剩余速度的影响最大,Weldox460钢次之,LY12铝最小。  相似文献   
147.
本文运用对实测放热速率曲线拟合得到的双韦别函数放热速率表达式,结合工作过程的数值模拟计算,研究12V150ZL增压发动机在标定工况燃油量时的燃烧放热速率的变化规律,预测燃烧过程对发动机性能指标的影响.为评价和完善12V150ZL增压发动机的燃烧过程提供理论依据.  相似文献   
148.
长杆射弹侵彻三种混凝土靶的实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究钻地武器的侵彻性能,在57mm口径的气炮上发射长杆射弹对三种靶体进行模拟侵彻实验。靶体为水泥砂浆石靶、钢纤维混凝土靶和含单层密排刚玉球的钢纤维混凝土靶。实验结果表明,弹头形状对侵彻深度有明显影响;当长杆射弹和撞击速度都相同时,与侵彻钢纤维混凝土靶相比,含单层密排刚玉球的钢纤维混凝土靶中的侵彻深度大约降低了11%,而水泥砂浆石靶中的侵彻深度增加了12%。  相似文献   
149.
Changing and optimizing the projectile nose shape is an important way to achieve specific ballistic performance. One special ballistic performance is the embedding effect, which can achieve a delayed high-explosive reaction on the target surface. This embedding effect includes a rebound phase that is significantly different from the traditional penetration process. To better study embedment behavior, this study proposed a novel nose shape called an annular grooved projectile and defined its interaction process with the ductile metal plate as partial penetration. Specifically, we conducted a series of low-velocity-ballistic tests in which these steel projectiles were used to strike 16-mm-thick target plates made with 2024-O aluminum alloy. We observed the dynamic evolution characteristics of this aluminum alloy near the impact craters and analyzed these characteristics by corresponding cross-sectional views and numerical simulations. The results indicated that the penetration resistance had a brief decrease that was influenced by its groove structure, but then it increased significantly-that is, the fluctuation of penetration resistance was affected by the irregular nose shape. Moreover, we visualized the distribution of the material in the groove and its inflow process through the rheology lines in microscopic tests and the highlighted mesh lines in simulations. The combination of these phenomena revealed the embed-ment mechanism of the annular grooved projectile and optimized the design of the groove shape to achieve a more firm embedment performance. The embedment was achieved primarily by the target material filled in the groove structure. Therefore, preventing the shear failure that occurred on the filling material was key to achieving this embedding effect.  相似文献   
150.
使用锥形量热仪对典型包装材料———内衬聚苯乙烯(PS)泡沫塑料外包装硬纸板的燃烧性能进行了实验研究,测得了不同热辐射强度下包装材料样品的点燃时间、热释放速率、质量损失率、比消光面积(发烟量)、CO的产率等燃烧性能参数。实验结果表明,包装材料受热辐射时很容易被点燃,燃烧时放出大量的热和有毒烟气。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号