首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   14篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   8篇
  2013年   4篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   16篇
  2006年   8篇
  2005年   6篇
  2004年   9篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
11.
When facing high levels of overstock inventories, firms often push their salesforce to work harder than usual to attract more demand, and one way to achieve that is to offer attractive incentives. However, most research on the optimal design of salesforce incentives ignores this dependency and assumes that operational decisions of production/inventory management are separable from design of salesforce incentives. We investigate this dependency in the problem of joint salesforce incentive design and inventory/production control. We develop a dynamic Principal‐Agent model with both Moral Hazard and Adverse Selection in which the principal is strategic and risk‐neutral but the agent is myopic and risk‐averse. We find the optimal joint incentive design and inventory control strategy, and demonstrate the impact of operational decisions on the design of a compensation package. The optimal strategy is characterized by a menu of inventory‐dependent salesforce compensation contracts. We show that the optimal compensation package depends highly on the operational decisions; when inventory levels are high, (a) the firm offers a more attractive contract and (b) the contract is effective in inducing the salesforce to work harder than usual. In contrast, when inventory levels are low, the firm can offer a less attractive compensation package, but still expect the salesforce to work hard enough. In addition, we show that although the inventory/production management and the design of salesforce compensation package are highly correlated, information acquisition through contract design allows the firm to implement traditional inventory control policies: a market‐based state‐dependent policy (with a constant base‐stock level when the inventory is low) that makes use of the extracted market condition from the agent is optimal. This work appears to be the first article on operations that addresses the important interplay between inventory/production control and salesforce compensation decisions in a dynamic setting. Our findings shed light on the effective integration of these two significant aspects for the successful operation of a firm. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 320–340, 2014  相似文献   
12.
Products with short life cycles are becoming increasingly common in many industries, such as the personal computer (PC) and mobile phone industries. Traditional forecasting methods and inventory policies can be inappropriate for forecasting demand and managing inventory for a product with a short life cycle because they usually do not take into account the characteristics of the product life cycle. This can result in inaccurate forecasts, high inventory cost, and low service levels. Besides, many forecasting methods require a significant demand history, which is available only after the product has been sold for some time. In this paper, we present an adaptive forecasting algorithm with two characteristics. First, it uses structural knowledge on the product life cycle to model the demand. Second, it combines knowledge on the demand that is available prior to the launch of the product with actual demand data that become available after the introduction of the product to generate and update demand forecasts. Based on the forecasting algorithm, we develop an optimal inventory policy. Since the optimal inventory policy is computationally expensive, we propose three heuristics and show in a numerical study that one of the heuristics generates near‐optimal solutions. The evaluation of our approach is based on demand data from a leading PC manufacturer in the United States, where the forecasting algorithm has been implemented. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
13.
We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding), and intermediate (work‐in‐process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two different, but closely related, Dantzig‐Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig‐Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two different lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near‐optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with different types of strongly ????‐hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near‐optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
14.
We address infinite‐horizon models for oligopolies with competing retailers under demand uncertainty. We characterize the equilibrium behavior which arises under simple wholesale pricing schemes. More specifically, we consider a periodic review, infinite‐horizon model for a two‐echelon system with a single supplier servicing a network of competing retailers. In every period, each retailer faces a random demand volume, the distribution of which depends on his own retail price as well as those charged by possibly all competing retailers. We also derive various comparative statics results regarding the impact several exogenous system parameters (e.g., cost or distributional parameters) have on the equilibrium decisions of the retailers as well as their expected profits. We show that certain monotonicity properties, engrained in folklore as well as in known inventory models for centralized systems, may break down in decentralized chains under retailer competition. Our results can be used to optimize the aggregate profits in the supply chain (i.e., those of the supplier and all retailers) by implementing a specific wholesale pricing scheme. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
15.
针对传统器材供应模式效率低的问题,借助供应链管理的思想提出了多需求点整合供应模式,并建立了基于级库存策略的整合优化模型,对成本各组成部分分析求解,得到了最优总成本对应的策略参数,其中总成本考虑了供应中心补货成本、库存持有成本、供应成本和供应延迟成本.最后通过算例与直接供应策略进行了比较,证明了整合供应策略的有效性.  相似文献   
16.
In this paper, we extend the inventory lot‐size models to allow for inflation and fluctuating demand (which is more general than constant, increasing, decreasing, and log‐concave demand patterns). We prove that the optimal replenishment schedule not only exists but is also unique. Furthermore, we show that the total cost associated with the inventory system is a convex function of the number of replenishments. Hence, the search for the optimal number of replenishments is simplified to finding a local minimum. Finally, several numerical examples are provided to illustrate the results. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 144–158, 2001  相似文献   
17.
Allocation of scarce common components to finished product orders is central to the performance of assembly systems. Analysis of these systems is complex, however, when the product master schedule is subject to uncertainty. In this paper, we analyze the cost—service performance of a component inventory system with correlated finished product demands, where component allocation is based on a fair shares method. Such issuing policies are used commonly in practice. We quantify the impact of component stocking policies on finished product delays due to component shortages and on product order completion rates. These results are used to determine optimal base stock levels for components, subject to constraints on finished product service (order completion rates). Our methodology can help managers of assembly systems to (1) understand the impact of their inventory management decisions on customer service, (2) achieve cost reductions by optimizing their inventory investments, and (3) evaluate supplier performance and negotiate contracts by quantifying the effect of delivery lead times on costs and customer service. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:409–429, 2001  相似文献   
18.
针对VARI-METRIC模型在低可用度下结果不准确的问题,建立基于生灭过程的任意等级、任意层级可修件库存优化模型。通过对各级站点、各类备件需求率与到达率的预测,对每个部件建立其生灭过程模型,并提出基于生灭过程的装备可用度计算方法。以整个保障系统的装备可用度为约束指标,以备件总购置费最低为目标,利用边际算法得到最优备件配置方案,并建立仿真模型对所得优化方案进行评估与调整。结合算例,以仿真结果作为检验标准,选取权威的VMETRIC软件与该解析模型在优化性能、计算精度及适用性上进行对比和说明。结果表明,无论是解析模型还是VMETRIC软件,均存在一定的适用范围,而采用解析与仿真相结合的方法无疑具有更强的适应性。  相似文献   
19.
This paper develops and applies a nonparametric bootstrap methodology for setting inventory reorder points and a simple inequality for identifying existing reorder points that are unreasonably high. We demonstrate that an empirically based bootstrap method is both feasible and calculable for large inventories by applying it to the 1st Marine Expeditionary Force General Account, an inventory consisting of $20–30 million of stock for 10–20,000 different types of items. Further, we show that the bootstrap methodology works significantly better than the existing methodology based on mean days of supply. In fact, we demonstrate performance equivalent to the existing system with a reduced inventory at one‐half to one‐third the cost; conversely, we demonstrate significant improvement in fill rates and other inventory performance measures for an inventory of the same cost. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 459–478, 2000  相似文献   
20.
We establish various inventory replenishment policies to solve the problem of determining the timing and number of replenishments. We then analytically compare various models, and identify the best alternative among them based on minimizing total relevant costs. Furthermore, we propose a simple and computationally efficient optimal method in a recursive fashion, and provide two examples for illustration. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 791–806, 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号