首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   14篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   8篇
  2013年   4篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   16篇
  2006年   8篇
  2005年   6篇
  2004年   9篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
排序方式: 共有145条查询结果,搜索用时 281 毫秒
61.
In this study, we explore an inventory model for a wholesaler who sells a fashion product through two channels with asymmetric sales horizons. The wholesaler can improve profitability by employing joint procurement and inventory reallocation as a recourse action in response to the dynamics of sales. In this research, a simple stochastic programming model is analyzed to specify the properties of the optimal inventory decisions. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
62.
根据联合申请的备件品种范围的不同,提出了3种订货策略,即单独申请、统一申请和联合申请,并设计了联合申请策略的启发式算法。该算法首先确定订购最频繁的备件,将其申请周期作为基本申请周期,其他备件申请周期是该周期的整倍数;其次寻求各种备件的最优订货倍数;最后确定各种备件的订购量。数值实例表明:联合申请策略的聚集效应明显优于单独申请策略和统一申请策略,对多品种库存控制策略的研究有一定意义。  相似文献   
63.
针对初始库存和终止库存不为零的生产与库存问题,通过适当设置需求量,将其化为初始库存和终止库存为零的问题,以便应用重生性质进行求解。  相似文献   
64.
有运力限制条件下的军械紧急调运优化模型研究   总被引:5,自引:1,他引:4  
军械调运是军械保障工作中一个十分重要的环节,关系到军械保障工作能否快捷有效地完成.考虑到战时状况下军械调运的复杂性、快速性、危险性等特点,文中建立了2种有运力限制条件下的多需求点、多货种军械紧急调运的优化模型,通过严格的数学逻辑推导,对2种模型给出了解析算法,并通过具体的算例表明了模型的正确性及算法的有效性.  相似文献   
65.
We consider a problem of optimal division of stock between a logistic depot and several geographically dispersed bases, in a two‐echelon supply chain. The objective is to minimize the total cost of inventory shipment, taking into account direct shipments between the depot and the bases, and lateral transshipments between bases. We prove the convexity of the objective function and suggest a procedure for identifying the optimal solution. Small‐dimensional cases, as well as a limit case in which the number of bases tends to infinity, are solved analytically for arbitrary distributions of demand. For a general case, an approximation is suggested. We show that, in many practical cases, partial pooling is the best strategy, and large proportions of the inventory should be kept at the bases rather than at the depot. The analytical and numerical examples show that complete pooling is obtained only as a limit case in which the transshipment cost tends to infinity. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 3–18, 2017  相似文献   
66.
We address the problem of determining optimal ordering and pricing policies in a finite‐horizon newsvendor model with unobservable lost sales. The demand distribution is price‐dependent and involves unknown parameters. We consider both the cases of perishable and nonperishable inventory. A very general class of demand functions is studied in this paper. We derive the optimal ordering and pricing policies as unique functions of the stocking factor (which is a linear transformation of the safety factor). An important expression is obtained for the marginal expected value of information. As a consequence, we show when lost sales are unobservable, with perishable inventory the optimal stocking factor is always at least as large as the one given by the single‐period model; however, if inventory is nonperishable, this result holds only under a strong condition. This expression also helps to explain why the optimal stocking factor of a period may not increase with the length of the problem. We compare this behavior with that of a full information model. We further examine the implications of the results to the special cases when demand uncertainty is described by additive and multiplicative models. For the additive case, we show that if demand is censored, the optimal policy is to order more as well as charge higher retail prices when compared to the policies in the single‐period model and the full information model. We also compare the optimal and myopic policies for the additive and multiplicative models. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
67.
This article addresses the inventory placement problem in a serial supply chain facing a stochastic demand for a single planning period. All customer demand is served from stage 1, where the product is stored in its final form. If the demand exceeds the supply at stage 1, then stage 1 is resupplied from stocks held at the upstream stages 2 through N, where the product may be stored in finished form or as raw materials or subassemblies. All stocking decisions are made before the demand occurs. The demand is nonnegative and continuous with a known probability distribution, and the purchasing, holding, shipping, processing, and shortage costs are proportional. There are no fixed costs. All unsatisfied demand is lost. The objective is to select the stock quantities that should be placed different stages so as to maximize the expected profit. Under reasonable cost assumptions, this leads to a convex constrained optimization problem. We characterize the properties of the optimal solution and propose an effective algorithm for its computation. For the case of normal demands, the calculations can be done on a spreadsheet. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:506–517, 2001  相似文献   
68.
Optimizing the selection of resources to accomplish a set of tasks involves evaluating the tradeoffs between the cost of maintaining the resources necessary to accomplish the tasks and the penalty cost associated with unfinished tasks. We consider the case where resources are categorized into types, and limits (capacity) are imposed on the number of each type that can be selected. The objective is to minimize the sum of penalty costs and resource costs. This problem has several practical applications including production planning, new product design, menu selection and inventory management. We develop a branch‐and‐bound algorithm to find exact solutions to the problem. To generate bounds, we utilize a dual ascent procedure which exploits the special structure of the problem. Information from the dual and recovered primal solutions are used to select branching variables. We generate strong valid inequalities and use them to fix other variables at each branching step. Results of tests performed on reasonably sized problems are presented. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 19–37, 1999  相似文献   
69.
This article studies the inventory competition under yield uncertainty. Two firms with random yield compete for substitutable demand: If one firm suffers a stockout, which can be caused by yield failure, its unsatisfied customers may switch to its competitor. We first study the case in which two competing firms decide order quantities based on the exogenous reliability levels. The results from the traditional inventory competition are generalized to the case with yield uncertainty and we find that quantity and reliability can be complementary instruments in the competition. Furthermore, we allow the firms to endogenously improve their yield reliability before competing in quantity. We show that the reliability game is submodular under some assumptions. The results indicate that the competition in quantity can discourage the reliability improvement. With an extensive numerical study, we also demonstrate the robustness of our analytical results in more general settings. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 107–126, 2015  相似文献   
70.
In this paper an inventory model with several demand classes, prioritised according to importance, is analysed. We consider a lot‐for‐lot or (S ? 1, S) inventory model with lost sales. For each demand class there is a critical stock level at and below which demand from that class is not satisfied from stock on hand. In this way stock is retained to meet demand from higher priority demand classes. A set of such critical levels determines the stocking policy. For Poisson demand and a generally distributed lead time, we derive expressions for the service levels for each demand class and the average total cost per unit time. Efficient solution methods for obtaining optimal policies, with and without service level constraints, are presented. Numerical experiments in which the solution methods are tested demonstrate that significant cost reductions can be achieved by distinguishing between demand classes. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 593–610, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10032  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号