首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   14篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   8篇
  2013年   4篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   16篇
  2006年   8篇
  2005年   6篇
  2004年   9篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
排序方式: 共有145条查询结果,搜索用时 156 毫秒
81.
Models for integrated production and demand planning decisions can serve to improve a producer's ability to effectively match demand requirements with production capabilities. In contexts with price‐sensitive demands, economies of scale in production, and multiple capacity options, such integrated planning problems can quickly become complex. To address these complexities, this paper provides profit‐maximizing production planning models for determining optimal demand and internal production capacity levels under price‐sensitive deterministic demands, with subcontracting and overtime options. The models determine a producer's optimal price, production, inventory, subcontracting, overtime, and internal capacity levels, while accounting for production economies of scale and capacity costs through concave cost functions. We use polyhedral properties and dynamic programming techniques to provide polynomial‐time solution approaches for obtaining an optimal solution for this class of problems when the internal capacity level is time‐invariant. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
82.
In this paper we consider a transportation problem where several products have to be shipped from an origin to a destination by means of vehicles with given capacity. Each product is made available at the origin and consumed at the destination at the same constant rate. The time between consecutive shipments must be greater than a given minimum time. All demand needs to be satisfied on time and backlogging is not allowed. The problem is to decide when to make the shipments and how to load the vehicles with the objective of minimizing the long run average of the transportation and the inventory costs at the origin and at the destination over an infinite horizon. We consider two classes of practical shipping policies, the zero inventory ordering (ZIO) policies and the frequency‐based periodic shipping (FBPS) policies. We show that, in the worst‐case, the Best ZIO policy has a performance ratio of . A better performance guarantee of is shown for the best possible FBPS policy. The performance guarantees are tight. Finally, combining the Best ZIO and the Best FBPS policies, a policy that guarantees a performance is obtained. Computational results show that this policy gives an average percent optimality gap on all the tested instances of <1%. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
83.
In some supply chains serious disruptions are system wide. This happens during periods of severe weather, as when storms cause shuttle tankers serving oil platforms in the North Sea to stop movements of crude oil, barges are frozen in the Mississippi, or all airplanes are grounded after a blizzard. Other notable instances of system‐wide disruption happened after the attack on the World Trade Center when all aircraft were grounded and the natural gas and crude‐oil pipelines were tangled by hurricanes in 2005. We model a situation where shutting down supply facilities is very difficult and expensive because of excessive inventory buildup from an inability to move out the production. We present a planning model that balances the cost of spare capacity versus shutting down production when planning for disruptions. The model uses an assignment model embedded in a simulation. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
84.
This article is concerned with the determination of pricing strategies for a firm that in each period of a finite horizon receives replenishment quantities of a single product which it sells in two markets, for example, a long‐distance market and an on‐site market. The key difference between the two markets is that the long‐distance market provides for a one period delay in demand fulfillment. In contrast, on‐site orders must be filled immediately as the customer is at the physical on‐site location. We model the demands in consecutive periods as independent random variables and their distributions depend on the item's price in accordance with two general stochastic demand functions: additive or multiplicative. The firm uses a single pool of inventory to fulfill demands from both markets. We investigate properties of the structure of the dynamic pricing strategy that maximizes the total expected discounted profit over the finite time horizon, under fixed or controlled replenishment conditions. Further, we provide conditions under which one market may be the preferred outlet to sale over the other. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 531–549, 2015  相似文献   
85.
We consider two specially structured assemble‐to‐order (ATO) systems—the N‐ and W‐systems—under continuous review, stochastic demand, and nonidentical component replenishment leadtimes. Using a hybrid approach that combines sample‐path analysis, linear programming, and the tower property of conditional expectation, we characterize the optimal component replenishment policy and common‐component allocation rule, present comparative statics of the optimal policy parameters, and show that some commonly used heuristic policies can lead to significant optimality loss. The optimality results require certain symmetry in the cost parameters. In the absence of this symmetry, we show that, for systems with high demand volume, the asymptotically optimal policy has essentially the same structure; otherwise, the optimal policies have no clear structure. For these latter systems, we develop heuristic policies and show their effectiveness. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 62: 617–645, 2015  相似文献   
86.
Risk-Adjusted-Return-On-Capital (RAROC) is a loan-pricing criterion under which a bank sets the loan term such that a certain rate of return is achieved on the regulatory capital required by the Basel regulation. Some banks calculate the amount of regulatory capital for each loan under the standardized approach (“standardized banks,” the regulatory capital is proportional to the loan amount), and others under the internal rating-based (IRB) approach (“IRB banks,” the regulatory capital is related to the Value-at-Risk of the loan). This article examines the impact of the RAROC criterion on the bank's loan-pricing decision and the retailer's inventory decision. We find that among the loan terms that satisfy the bank's RAROC criterion, the one that benefits the retailer the most requires the bank to specify an inventory advance rate in addition to the interest rate. Under this loan term, the retailer's inventory level is more sensitive to his asset level when facing an IRB bank compared to a standardized bank. An IRB (standardized) loan leads to higher profit and inventory level for retailers with high (low) asset. For retailers with medium asset, an IRB loan results in a higher retailer profit but a lower consumer welfare. Calibrated numerical study reveals that the benefit of choosing standardized banks (relative to IRB banks) can be as high as 30% for industries with severe capital constraints, volatile demands, and low profit margins, highlighting the importance for retailers to carefully choose the type of banks to borrow from. When the interest rate is capped by regulation, retailers borrowing from a standardized bank are more likely to be influenced by the interest rate cap than those borrowing from an IRB bank. Under strong empire-building incentives (the bank will offer loan terms to maximize the size of the loan), retailers with medium initial asset level shift their preference from IRB banks to standardized banks.  相似文献   
87.
在分析应急物流研究成果基础上,探索应用虚拟仓库理论和仿真技术研究应急物流中的协同库存问题.为此,构建了军事虚拟仓库系统及其协同控制系统动力学仿真模型,并针对军民、军军仓库间的应急物流协同保障策略进行仿真分析,结果表明这种方法可以在应急状态下合理调度和管理各类仓库资源,改进应急物流条件下仓库保障能力.  相似文献   
88.
A well‐studied problem in airline revenue management is the optimal allocation of seat inventory among different fare‐classes, given a capacity for the flight and a demand distribution for each class. In practice, capacity on a flight does not have to be fixed; airlines can exercise some flexibility on the supply side by swapping aircraft of different capacities between flights as partial booking information is gathered. This provides the airline with the capability to more effectively match their supply and demand. In this paper, we study the seat inventory control problem considering the aircraft swapping option. For theoretical and practical purposes, we restrict our attention to the class of booking limit policies. Our analytical results demonstrate that booking limits considering the swapping option can be considerably different from those under fixed capacity. We also show that principles on the relationship between the optimal booking limits and demand characteristics (size and risk) developed for the fixed‐capacity problem no longer hold when swapping is an option. We develop new principles and insights on how demand characteristics affect the optimal booking limits under the swapping possibility. We also develop an easy to implement heuristic for determining the booking limits under the swapping option and show, through a numerical study, that the heuristic generates revenues close to those under the optimal booking limits. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
89.
We study an infinite horizon periodic stochastic inventory system consisting of retail outlets and customers located on a homogenous line segment. In each period, the total demand, generated by the customers on the line, is normally distributed. To better match supply and demand, we incorporate lateral transshipments. We propose a compact model in which the strategic decisions—the number and locations of retail outlets—are determined simultaneously with the operational decisions—the inventory replenishment and transshipment quantities. We find the optimal balance between the risk‐pooling considerations, which drive down the optimal number of retail outlets, and lateral transshipments, which drive up the optimal number of retail outlets. We also explore the sensitivity of the optimal number of retail outlets to various problem parameters. This article presents a novel way of integrating lateral transshipments in the context of an inventory‐location model. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
90.
This paper develops a methodology for measuring the capital value of military assets in monetary terms. We distinguish between two military capital measures. One measure, called the value of military capital (services) summarizes the value of military defense assets during a particular year. A comparison of the capital‐services value of U.S. and Soviet tactical combat aircraft is provided for the period 1970–1984.

One feature of the capital‐services measure that makes it particularly interesting is that its size can be compared with such military expenditures as operating and support. While these latter expenditures reflect the readiness of a defense establishment, the relevant capital‐services measure reflects force structure and modernization.

A second measure, called the value of military capital (wealth), summarizes the military benefits obtained from defense assets over the remainder of their service lives. This measure depreciates the capital as it ages, and is useful for comparing military wealth with other types of wealth in the economy. We provide this measure for the U.S. military capital stock for 1925–1984.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号