首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   24篇
  国内免费   9篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   7篇
  2014年   12篇
  2013年   18篇
  2012年   8篇
  2011年   15篇
  2010年   10篇
  2009年   11篇
  2008年   15篇
  2007年   22篇
  2006年   8篇
  2005年   8篇
  2004年   8篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
排序方式: 共有203条查询结果,搜索用时 437 毫秒
31.
In this article, we consider a classic dynamic inventory control problem of a self‐financing retailer who periodically replenishes its stock from a supplier and sells it to the market. The replenishment decisions of the retailer are constrained by cash flow, which is updated periodically following purchasing and sales in each period. Excess demand in each period is lost when insufficient inventory is in stock. The retailer's objective is to maximize its expected terminal wealth at the end of the planning horizon. We characterize the optimal inventory control policy and present a simple algorithm for computing the optimal policies for each period. Conditions are identified under which the optimal control policies are identical across periods. We also present comparative statics results on the optimal control policy. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   
32.
采用KORIGEN程序对船用堆的堆芯放射性核素总量进行了计算,并对连续满功率运行和实际变功率运行的计算结果进行了分析与比较,探讨了放射性核素总量随功率运行史的变化规律.  相似文献   
33.
一种使用可用度备件库存模型   总被引:2,自引:0,他引:2  
阐述了以装备战备完好性为中心的备件库存控制的基本原理,并给出了以可用度为中心的备件库存数学模型.该模型可计算装备细目结构中的所有组件在各级维修机构中的库存水平,在满足一定费用约束条件下,使装备的使用可用度达到最大.  相似文献   
34.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
35.
An important aspect of supply chain management is dealing with demand and supply uncertainty. The uncertainty of future supply can be reduced if a company is able to obtain advance capacity information (ACI) about future supply/production capacity availability from its supplier. We address a periodic‐review inventory system under stochastic demand and stochastic limited supply, for which ACI is available. We show that the optimal ordering policy is a state‐dependent base‐stock policy characterized by a base‐stock level that is a function of ACI. We establish a link with inventory models that use advance demand information (ADI) by developing a capacitated inventory system with ADI, and we show that equivalence can only be set under a very specific and restrictive assumption, implying that ADI insights will not necessarily hold in the ACI environment. Our numerical results reveal several managerial insights. In particular, we show that ACI is most beneficial when there is sufficient flexibility to react to anticipated demand and supply capacity mismatches. Further, most of the benefits can be achieved with only limited future visibility. We also show that the system parameters affecting the value of ACI interact in a complex way and therefore need to be considered in an integrated manner. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
36.
以PCI04嵌入式工控机为核心设计主控单元,以嵌入式单片机为核心设计从属单元,并应用GPS OEM接收板、AMAI)4550无线通信模块等,构建无线主从分布式信息共享系统.在该系统的支持下,大型防空导弹武器系统和若十便携式防空导弹间可以进行信息共享和交互,集成为一个以大型防空导弹武器系统为中心的防空作战体系,通过优势互补和邯同作战,能够实现作战效能的倍增.  相似文献   
37.
针对联合作战中分布、动态的战场环境和海量的战场信息,满足不同作战实体对战场信息资源共享的需求,构建了一个基于多智能体的、面向作战任务的信息资源共享模型,并提出了一种新颖的基于相似度的用户动态聚类方法。从用户的资源请求中发现用户兴趣和用户之间的相似度,通过交互机制有效地将相同兴趣的用户及资源智能体关联起来,提高作战主体获取战场信息的能力。实验证明该算法具有较高的效率和良好的可扩展性。  相似文献   
38.
39.
We study the problem of capacity exchange between two firms in anticipation of the mismatch between demand and capacity, and its impact on firm's capacity investment decisions. For given capacity investment levels of the two firms, we demonstrate how capacity price may be determined and how much capacity should be exchanged when either manufacturer acts as a Stackelberg leader in the capacity exchange game. By benchmarking against the centralized system, we show that a side payment may be used to coordinate the capacity exchange decisions. We then study the firms' capacity investment decisions using a biform game framework in which capacity investment decisions are made individually and exchange decisions are made as in a centralized system. We demonstrate the existence and uniqueness of the Nash equilibrium capacity investment levels and study the impact of firms' share of the capacity exchange surplus on their capacity investment levels.© 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
40.
This study presents power‐of‐two policies for a serial inventory system with constant demand rate and incremental quantity discounts at the most upstream stage. It is shown that an optimal solution is nested and follows a zero‐inventory ordering policy. To prove the effectiveness of power‐of‐two policies, a lower bound on the optimal cost is obtained. A policy that has a cost within 6% of the lower bound is developed for a fixed base planning period. For a variable base planning period, a 98% effective policy is provided. An extension is included for a system with price dependent holding costs. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号