首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   24篇
  国内免费   9篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   7篇
  2014年   12篇
  2013年   18篇
  2012年   8篇
  2011年   15篇
  2010年   10篇
  2009年   11篇
  2008年   15篇
  2007年   22篇
  2006年   8篇
  2005年   8篇
  2004年   8篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
71.
This paper considers a discrete time, single item production/inventory system with random period demands. Inventory levels are reviewed periodically and managed using a base‐stock policy. Replenishment orders are placed with the production system which is capacitated in the sense that there is a single server that sequentially processes the items one at a time with stochastic unit processing times. In this setting the variability in demand determines the arrival pattern of production orders at the queue, influencing supply lead times. In addition, the inventory behavior is impacted by the correlation between demand and lead times: a large demand size corresponds to a long lead time, depleting the inventory longer. The contribution of this paper is threefold. First, we present an exact procedure based on matrix‐analytic techniques for computing the replenishment lead time distribution given an arbitrary discrete demand distribution. Second, we numerically characterize the distribution of inventory levels, and various other performance measures such as fill rate, base‐stock levels and optimal safety stocks, taking the correlation between demand and lead times into account. Third, we develop an algorithm to fit the first two moments of the demand and service time distribution to a discrete phase‐type distribution with a minimal number of phases. This provides a practical tool to analyze the effect of demand variability, as measured by its coefficient of variation, on system performance. We also show that our model is more appropriate than some existing models of capacitated systems in discrete time. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
72.
This paper develops an inventory model that determines replenishment strategies for buyers facing situations in which sellers offer price‐discounting campaigns at random times as a way to drive sales or clear excess inventory. Specifically, the model deals with the inventory of a single item that is maintained to meet a constant demand over time. The item can be purchased at two different prices denoted high and low. We assume that the low price goes into effect at random points in time following an exponential distribution and lasts for a random length of time following another exponential distribution. We highlight a replenishment strategy that will lead to the lowest inventory holding and ordering costs possible. This strategy is to replenish inventory only when current levels are below a certain threshold when the low price is offered and the replenishment is to a higher order‐up‐to level than the one currently in use when inventory depletes to zero and the price is high. Our analysis provides new insight into the behavior of the optimal replenishment strategy in response to changes in the ratio of purchase prices together with changes in the ratio of the duration of a low‐price period to that of a high‐price period. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   
73.
A firm making quantity decision under uncertainty loses profit if its private information is leaked to competitors. Outsourcing increases this risk as a third party supplier may leak information for its own benefit. The firm may choose to conceal information from the competitors by entering in a confidentiality agreement with the supplier. This, however, diminishes the firm's ability to dampen competition by signaling a higher quantity commitment. We examine this trade‐off in a stylized supply chain in which two firms, endowed with private demand information, order sequentially from a common supplier, and engage in differentiated quantity competition. In our model, the supplier can set different wholesale prices for firms, and the second‐mover firm could be better informed. Contrary to what is expected, information concealment is not always beneficial to the first mover. We characterize conditions under which the first mover firm will not prefer concealing information. We show that this depends on the relative informativeness of the second mover and is moderated by competition intensity. We examine the supplier's incentive in participating in information concealment, and develop a contract that enables it for wider set of parameter values. We extend our analysis to examine firms' incentive to improve information. © 2014 Wiley Periodicals, Inc. 62:1–15, 2015  相似文献   
74.
由于当前应急器材储备依然存在“多储”或“少储”风险,为提高储备效益,以企业经济效益与军队采购成本为优化目标,提出了应急器材柔性采购策略。通过建立企业储备策略与军队采购定价最优化模型,求解得到了在不同战争爆发概率及器材现货市场价格区间等外部环境因素下的军队最佳柔性定价及对应的企业最优储备策略,并通过实例分析验证了得出的决策结论。结果表明,最优策略的实施将有利于军队与企业共担应急器材数量储备风险。  相似文献   
75.
软件共用是航天测控软件的发展趋势,分析了航天测控软件共用的可行性,并选取火箭遥测软件作为原型验证系统,提出了解决方案和设计方法,采用ICE中间件和构件技术实现了该原型验证系统,经测试验证,分布式部署的原型验证软件各项指标满足测控任务软件的技术要求,对航天测控软件共用研究具有重要的借鉴和指导意义。  相似文献   
76.
针对适应值计算费时的优化问题,提出一种具有适应值预测机制的遗传算法:为了有效控制预测适应值的准确度和预测频率,建立了一个基于可信度概念的适应值预测模型,引入可信度流失机制以减少预测误差的传播和累积,引入冗余个体剔除机制以减少计算消耗。利用3个基准函数对算法进行收敛性和有效性的测试,测试结果表明算法对于3个测试函数均能获得满意的最优解,并且都能减少60%以上的真实适应值计算次数。  相似文献   
77.
共享态势认识的效用   总被引:1,自引:0,他引:1  
态势认识是指挥控制过程在认知域中的重要环节,认识共享是改进态势认识、减少认识偏差的重要手段。文中在分析态势认识的基础上,提出战术相关要素的发现概率、态势认识中的理解程度和理解偏差的概念,建立了用于态势认识的定量评估的数学模型,分析了认识共享对战场态势认识的改进程度,导出了团队合作时战术相关要素发现概率与个体数量的关系式,给出理解偏差与个体数量的联系方程并求出极值条件。  相似文献   
78.
Consider a sequential dynamic pricing model where a seller sells a given stock to a random number of customers. Arriving one at a time, each customer will purchase one item if the product price is lower than her personal reservation price. The seller's objective is to post a potentially different price for each customer in order to maximize the expected total revenue. We formulate the seller's problem as a stochastic dynamic programming model, and develop an algorithm to compute the optimal policy. We then apply the results from this sequential dynamic pricing model to the case where customers arrive according to a continuous‐time point process. In particular, we derive tight bounds for the optimal expected revenue, and develop an asymptotically optimal heuristic policy. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
79.
In the classical EPQ model with continuous and constant demand, holding and setup costs are minimized when the production rate is no larger than the demand rate. However, the situation may change when demand is lumpy. We consider a firm that produces multiple products, each having a unique lumpy demand pattern. The decision involves determining both the lot size for each product and the allocation of resources for production rate improvements among the products. We find that each product's optimal production policy will take on only one of two forms: either continuous production or lot‐for‐lot production. The problem is then formulated as a nonlinear nonsmooth knapsack problem among products determined to be candidates for resource allocation. A heuristic procedure is developed to determine allocation amounts. The procedure decomposes the problem into a mixed integer program and a nonlinear convex resource allocation problem. Numerical tests suggest that the heuristic performs very well on average compared to the optimal solution. Both the model and the heuristic procedure can be extended to allow the company to simultaneously alter both the production rates and the incoming demand lot sizes through quantity discounts. Extensions can also be made to address the case where a single investment increases the production rate of multiple products. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
80.
We consider several independent decision makers who stock expensive, low‐demand spare parts for their high‐tech machines. They can collaborate by full pooling of their inventories via free transshipments. We examine the stability of such pooling arrangements, and we address the issue of fairly distributing the collective holding and downtime costs over the participants, by applying concepts from cooperative game theory. We consider two settings: one where each party maintains a predetermined stocking level and one where base stock levels are optimized. For the setting with fixed stocking levels, we unravel the possibly conflicting effects of implementing a full pooling arrangement and study these effects separately to establish intuitive conditions for existence of a stable cost allocation. For the setting with optimized stocking levels, we provide a simple proportional rule that accomplishes a population monotonic allocation scheme if downtime costs are symmetric among participants. Although our whole analysis is motivated by spare parts applications, all results are also applicable to other pooled resource systems of which the steady‐state behavior is equivalent to that of an Erlang loss system. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号