首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   145篇
  国内免费   32篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   10篇
  2019年   15篇
  2018年   10篇
  2017年   33篇
  2016年   32篇
  2015年   28篇
  2014年   32篇
  2013年   80篇
  2012年   34篇
  2011年   48篇
  2010年   34篇
  2009年   46篇
  2008年   36篇
  2007年   45篇
  2006年   40篇
  2005年   26篇
  2004年   32篇
  2003年   18篇
  2002年   18篇
  2001年   17篇
  2000年   14篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1975年   1篇
排序方式: 共有692条查询结果,搜索用时 718 毫秒
151.
Measuring the relative importance of components in a mechanical system is useful for various purposes. In this article, we study Birnbaum and Barlow‐Proschan importance measures for two frequently studied system designs: linear consecutive k ‐out‐of‐ n and m ‐consecutive‐ k ‐out‐of‐ n systems. We obtain explicit expressions for the component importance measures for systems consisting of exchangeable components. We illustrate the results for a system whose components have a Lomax type lifetime distribution. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
152.
When customers buy a product, they are often eligible for free repairs for a certain warranty period. In this article, we study some important aspects, which are often overlooked in the literature but are of interest to the manufacturer, in estimating both warranty and post‐warranty repair demands. We consider that the installed base of the product (i.e., the number of units of the product actually in use) varies with time due to both new sales and units being taken out of service. When estimating warranty and post‐warranty repair demands, we explicitly address the fact that customers may not always request repairs for failed units. For the case where the product failure time distribution is exponential, we derive the closed‐form expressions for both types of repair demands of a single unit and of the time‐varying installed base. The insights into some risk‐related quantities are also presented. Furthermore, the proposed model is extended by considering delayed warranty claims that are frequently seen in practice. Numerical examples illustrate that understanding both types of repair demands and the related decision variables is important for managing the obligatory and profitable repair services. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 499–511, 2013  相似文献   
153.
By running life tests at higher stress levels than normal operating conditions, accelerated life testing (ALT) quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant‐stress testing, a unit is tested at a fixed stress level until failure or the termination time point of test, whereas step‐stress testing allows the experimenter to gradually increase the stress levels at some prefixed time points during the test. In this work, the optimal k‐level constant‐stress and step‐stress ALTs are compared for the exponential failure data under complete sampling and Type‐I censoring. The objective is to quantify the advantage of using the step‐stress testing relative to the constant‐stress one. Assuming a log‐linear life–stress relationship with the cumulative exposure model for the effect of changing stress in step‐stress testing, the optimal design points are determined under C/D/A‐optimality criteria. The efficiency of step‐stress testing to constant‐stress one is then discussed in terms of the ratio of optimal objective functions based on the information matrix. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2013  相似文献   
154.
We consider the single server Markovian queue subject to Poisson generated catastrophes. Whenever a catastrophe occurs, all customers are forced to abandon the system, the server is rendered inoperative and an exponential repair time is set on. During the repair time new arrivals are allowed to join the system. We assume that the arriving customers decide whether to join the system or balk, based on a natural linear reward‐cost structure with two types of rewards: A (usual) service reward for those customers that receive service and a (compensation) failure reward for those customers that are forced to abandon the system due to a catastrophe. We study the strategic behavior of the customers regarding balking and derive the corresponding (Nash) equilibrium strategies for the observable and unobservable cases. We show that both types of strategic behavior may be optimal: to avoid the crowd or to follow it. The crucial factor that determines the type of customer behavior is the relative value of the service reward to the failure compensation. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
155.
通过分析悬浮式深弹发射后在空中的弹道特性,建立了深弹弹着点坐标的计算模型。采取蒙特卡洛方法,分别对舰艇六自由度状态下,单管和六联装火箭深弹的弹着点坐标进行了仿真计算,对弹着点的分布规律进行了研究,并得出弹着点的联合密度函数。结果表明,在发射参数存在正态扰动时,弹着点散布区域均呈椭圆形分布,弹着点坐标均仍服从正态分布。  相似文献   
156.
以复杂网络理论为基础,对联合作战指挥网络进行拓扑抽象,将指挥机构视为网络的节点,将指挥关系视为网络的边,构建了传统树状指挥网络模型、增加同级边互联的改进型指挥网络模型和不同层级边互联的交叉互联型指挥网络模型。并分析了三种网络的网络特性,以网络化效能系数( CNE)作为度量指标,对三种网络抗毁性进行了比对分析,指出了未来联合作战指挥网络体系需要具备的特征,对探索信息化条件下高效的联合作战指挥进行了有益的探索。  相似文献   
157.
针对C~3I 系统对分布式计算机网络数据加密的特定需求,重点对网络加密方式、密码装置、软件编程设计等核心问题进行了研究。可对数据加密总体设计与软件概要设计提供参考。  相似文献   
158.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
159.
In this article, we consider the performance evaluation of a multicomponent, multiproduct assemble‐to‐order (ATO) system. Each component is managed independently using a base‐stock policy at a supply facility with limited production capacity and an infinite buffer. The arrivals of demands follow a multivariate Poisson process and unfilled demands are backlogged. Because exact analysis of the proposed system is not feasible, we propose two approximation methods which provide upper and lower bounds for various performance measures such as fill rate, average waiting time, and average number of backorders of the proposed system. Our computational experiments demonstrate the effectiveness of the two approximation methods under various system settings. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
160.
We introduce a multi‐period tree network maintenance scheduling model and investigate the effect of maintenance capacity restrictions on traffic/information flow interruptions. Network maintenance refers to activities that are performed to keep a network operational. For linear networks with uniform flow between every pair of nodes, we devise a polynomial‐time combinatorial algorithm that minimizes flow disruption. The spiral structure of the optimal maintenance schedule sheds insights into general network maintenance scheduling. The maintenance problem on linear networks with a general flow structure is strongly NP‐hard. We formulate this problem as a linear integer program, derive strong valid inequalities, and conduct a polyhedral study of the formulation. Polyhedral analysis shows that the relaxation of our linear network formulation is tight when capacities and flows are uniform. The linear network formulation is then extended to an integer program for solving the tree network maintenance scheduling problem. Preliminary computations indicate that the strengthened formulations can solve reasonably sized problems on tree networks and that the intuitions gained from the uniform flow case continue to hold in general settings. Finally, we extend the approach to directed networks and to maintenance of network nodes. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号