首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   145篇
  国内免费   32篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   10篇
  2019年   15篇
  2018年   10篇
  2017年   33篇
  2016年   32篇
  2015年   28篇
  2014年   32篇
  2013年   80篇
  2012年   34篇
  2011年   48篇
  2010年   34篇
  2009年   46篇
  2008年   36篇
  2007年   45篇
  2006年   40篇
  2005年   26篇
  2004年   32篇
  2003年   18篇
  2002年   18篇
  2001年   17篇
  2000年   14篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1975年   1篇
排序方式: 共有692条查询结果,搜索用时 15 毫秒
331.
Assemble‐to‐order (ATO) is an important operational strategy for manufacturing firms to achieve quick response to customer orders while keeping low finished good inventories. This strategy has been successfully used not only by manufacturers (e.g., Dell, IBM) but also by retailers (e.g., Amazon.com). The evaluation of order‐based performance is known to be an important but difficult task, and the existing literature has been mainly focused on stochastic comparison to obtain performance bounds. In this article, we develop an extremely simple Stein–Chen approximation as well as its error‐bound for order‐based fill rate for a multiproduct multicomponent ATO system with random leadtimes to replenish components. This approximation gives an expression for order‐based fill rate in terms of component‐based fill rates. The approximation has the property that the higher the component replenishment leadtime variability, the smaller the error bound. The result allows an operations manager to analyze the improvement in order‐based fill rates when the base‐stock level for any component changes. Numerical studies demonstrate that the approximation performs well, especially when the demand processes of different components are highly correlated; when the components have high base‐stock levels; or when the component replenishment leadtimes have high variability. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
332.
针对维修性设计方案的评估优选问题进行分析,给出一种改进的设计参数综合评价优选方法.考虑到维修性设计因素评价的不确定性和模糊性的特点,采用集对分析理论对维修性设计因素的模糊语言值评价进行处理,并将层次赋权方法引入方案贴近度评估决策模型,以提高方案优选的可信性.最后以某航天器电源系统的维修性设计方案优选为例说明了该方法的应...  相似文献   
333.
提出了一种基于Rough集理论的数据库推理泄漏通道消除方法。在由数据库中所有数据生成的不完备决策表上,该方法应用Rough集理论,分析提取出敏感和非敏感数据之间的确定性推理关系,以此产生推理控制规则。利用这些规则对数据库系统返回给普通用户的数据动态地做最小修改,防止推理通道的产生。实验结果表明,该方法可扩展性强,在保证较高的数据库安全性的同时提高了数据可用性。  相似文献   
334.
This study introduces one modeling methodology that describes a broad range of multiple stage production planning issues, including multiple limited resources with setup times and joint fixed cost relationships. An existing production system is modeled in this fashion, creating a new set of 1350 highly generalized benchmark problems. A computational study is conducted with the 1350 benchmark problems introduced in this paper and 2100 benchmark problems, with more restrictive assumptions, from the existing literature. The relative merits of a decomposition‐based algorithm and a neighborhood search technique known as NIPPA, or the Non‐sequential Incremental Part Period Algorithm, are assessed. NIPPA is generally the more successful of the two techniques, although there are specific instances in which the decomposition‐based algorithm displayed a distinct advantage. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
335.
In this paper we present an application of the core solution concepts for multi‐objective games to a bank ATM network model. In these games, the worth of a coalition is given by a subset of vectors of the k‐dimensional space rather than by a scalar. The paper investigates how an ATM network model based on multi‐objective cooperative game theory could be used as an alternative way of setting interchange fees paid by the customer's bank to the one that owns the ATM. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
336.
One of the major problems in modeling production systems is how to treat the job arrival process. Restrictive assumptions such as Markovian arrivals do not represent real world systems, especially if the arrival process is generated by job departures from upstream workstations. Under these circumstances, cost‐effective policies that are robust with respect to the nature of the arrival process become of interest. In this paper, we focus on minimizing the expected total holding and setup costs in a two‐stage produce‐to‐order production system operated by a cross‐trained worker. We will show that if setup times are insignificant in comparison with processing times, then near‐optimal policies can be generated with very robust performances with respect to the arrival process. We also present conditions under which these near‐optimal policies can be obtained by using only the arrival and service rates. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
337.
A 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system consists of m × n components, and fails if and only if k or more components fail in an r × s submatrix. This system can be treated as a reliability model for TFT liquid crystal displays, wireless communication networks, etc. Although an effective method has been developed for evaluating the exact system reliability of small or medium‐sized systems, that method needs extremely high computing time and memory capacity when applied to larger systems. Therefore, developing upper and lower bounds and accurate approximations for system reliability is useful for large systems. In this paper, first, we propose new upper and lower bounds for the reliability of a 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system. Secondly, we propose two limit theorems for that system. With these theorems we can obtain accurate approximations for system reliabilities when the system is large and component reliabilities are close to one. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
338.
A naval task group (TG) is a collection of naval combatants and auxiliaries that are grouped together for the accomplishment of one or more missions. Ships forming a TG are located in predefined sectors. We define determination of ship sector locations to provide a robust air defense formation as the sector allocation problem (SAP). A robust formation is one that is very effective against a variety of attack scenarios but not necessarily the most effective against any scenario. We propose a 0‐1 integer linear programming formulation for SAP. The model takes the size and the direction of threat into account as well as the defensive weapons of the naval TG. We develop tight lower and upper bounds by incorporating some valid inequalities and use a branch and bound algorithm to exactly solve SAP. We report computational results that demonstrate the effectiveness of the proposed solution approach. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
339.
We show that the linear objective function of a search problem can be generalized to a power function and/or a logarithmic function and still be minimized by an index priority rule. We prove our result by solving the differential equation resulting from the required invariance condition, therefore, we also prove that any other generalization of this linear objective function will not lead to an index priority rule. We also demonstrate the full equivalence between two related search problems in the sense that a solution to either one can be used to solve the other one and vice versa. Finally, we show that the linear function is the only function leading to an index priority rule for the single‐machine makespan minimization problem with deteriorating jobs and an additive job deterioration function. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
340.
We consider a supplier with finite production capacity and stochastic production times. Customers provide advance demand information (ADI) to the supplier by announcing orders ahead of their due dates. However, this information is not perfect, and customers may request an order be fulfilled prior to or later than the expected due date. Customers update the status of their orders, but the time between consecutive updates is random. We formulate the production‐control problem as a continuous‐time Markov decision process and prove there is an optimal state‐dependent base‐stock policy, where the base‐stock levels depend upon the numbers of orders at various stages of update. In addition, we derive results on the sensitivity of the state‐dependent base‐stock levels to the number of orders in each stage of update. In a numerical study, we examine the benefit of ADI, and find that it is most valuable to the supplier when the time between updates is moderate. We also consider the impact of holding and backorder costs, numbers of updates, and the fraction of customers that provide ADI. In addition, we find that while ADI is always beneficial to the supplier, this may not be the case for the customers who provide the ADI. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号